Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930594

ABSTRACT

Plant biostimulants have received attention as sustainable alternatives to chemical fertilizers. Extracellular polymeric substances (EPSs), among the compounds secreted by plant growth-promoting rhizobacteria (PGPRs), are assumed to alleviate abiotic stress. This study aims to investigate the effect of purified EPSs on rice under abiotic stress and analyze their mechanisms. A pot experiment was conducted to elucidate the effects of inoculating EPSs purified from PGPRs that increase biofilm production in the presence of sugar on rice growth in heat-stress conditions. Since all EPSs showed improvement in SPAD after the stress, Enterobacter ludwigii, which was not characterized as showing higher PGP bioactivities such as phytohormone production, nitrogen fixation, and phosphorus solubilization, was selected for further analysis. RNA extracted from the embryos of germinating seeds at 24 h post-treatment with EPSs or water was used for transcriptome analysis. The RNA-seq analysis revealed 215 differentially expressed genes (DEGs) identified in rice seeds, including 139 up-regulated and 76 down-regulated genes. A gene ontology (GO) enrichment analysis showed that the enriched GO terms are mainly associated with the ROS scavenging processes, detoxification pathways, and response to oxidative stress. For example, the expression of the gene encoding OsAAO5, which is known to function in detoxifying oxidative stress, was two times increased by EPS treatment. Moreover, EPS application improved SPAD and dry weights of shoot and root by 90%, 14%, and 27%, respectively, under drought stress and increased SPAD by 59% under salt stress. It indicates that bacterial EPSs improved plant growth under abiotic stresses. Based on our results, we consider that EPSs purified from Enterobacter ludwigii can be used to develop biostimulants for rice.

2.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441834

ABSTRACT

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Dipeptidases , Glutathione , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Glutathione/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Dipeptidases/metabolism , Dipeptidases/genetics , Cytosol/metabolism , Dipeptides/metabolism , Sulfur/metabolism
3.
Plant Cell Physiol ; 65(5): 748-761, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38372612

ABSTRACT

Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacillus pumilus , Gene Expression Regulation, Plant , Peptidoglycan , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/growth & development , Peptidoglycan/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Bacillus pumilus/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Mutation , Plant Immunity
4.
Microorganisms ; 11(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37317167

ABSTRACT

This study aimed to determine the effect of sulfur (S) application on a root-associated microbial community resulting in a rhizosphere microbiome with better nutrient mobilizing capacity. Soybean plants were cultivated with or without S application, the organic acids secreted from the roots were compared. High-throughput sequencing of 16S rRNA was used to analyze the effect of S on microbial community structure of the soybean rhizosphere. Several plant growth-promoting bacteria (PGPB) isolated from the rhizosphere were identified that can be harnessed for crop productivity. The amount of malic acid secreted from the soybean roots was significantly induced by S application. According to the microbiota analysis, the relative abundance of Polaromonas, identified to have positive association with malic acid, and arylsulfatase-producing Pseudomonas, were increased in S-applied soil. Burkholderia sp. JSA5, obtained from S-applied soil, showed multiple nutrient-mobilizing traits among the isolates. In this study, S application affected the soybean rhizosphere bacterial community structure, suggesting the contribution of changing plant conditions such as in the increase in organic acid secretion. Not only the shift of the microbiota but also isolated strains from S-fertilized soil showed PGPB activity, as well as isolated bacteria that have the potential to be harnessed for crop productivity.

5.
Microorganisms ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36838197

ABSTRACT

Biofertilizers are agricultural materials capable of reducing the usage amounts of chemical fertilizers. Spore-forming microorganisms (SFM) could be used for plant growth promotion or to improve plant health. Until now, biofertilizers based on SFM have been applied for rice and other crops. In this study, we isolated and characterized SFM, which were colonized on the Oryza sativa L. roots. SFM were analyzed regarding the short-term effects of biofertilization on the nursery growths. Analysis was performed without nitrogen or any inorganic fertilizer and was divided into two groups, including bacteria and fungi. SF-bacteria were dominated by the Firmicutes group, including species from Viridibacillus, Lysinibacillus, Solibacillus, Paenibacillus, Priestia, and mainly Bacillus (50%). The fungi group was classified as Mucoromycota, Basidiomycota, and mainly Ascomycota (80%), with a predominance of Penicillium and Trichoderma species. In plant performance in comparison with B. pumilus TUAT1, some bacteria and fungus isolates significantly improved the early growth of rice, based on 48 h inoculum with 107 CFU mL-1. Furthermore, several SFM showed positive physiological responses under abiotic stress or with limited nutrients such as phosphorous (P). Moreover, the metabolic fingerprint was obtained. The biofertilizer based on SFM could significantly reduce the application of the inorganic fertilizer and improve the lodging resistances of rice, interactively enhancing better plant health and crop production.

6.
Microorganisms ; 10(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422352

ABSTRACT

Genetic and physiological characterization of bacteria derived from nodules of leguminous plants in the exploration of biofertilizer is of paramount importance from agricultural and environmental perspectives. Phylogenetic analysis of the 16S rRNA gene of 84 isolates derived from Bangladeshi soils revealed an unpredictably diverse array of nodule-forming and endosymbiotic bacteria-mostly belonging to the genus Bradyrhizobium. A sequence analysis of the symbiotic genes (nifH and nodD1) revealed similarities with the 16S rRNA gene tree, with few discrepancies. A phylogenetic analysis of the partial rrn operon (16S-ITS-23S) and multi-locus sequence analysis of atpD, glnII, and gyrB identified that the Bradyrhizobium isolates belonged to Bradyrhizobium diazoefficiens, Bradyrhizobium elkanii, Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense species. In the pot experiment, several isolates showed better activity than B. diazoefficiens USDA110, and the Bho-P2-B2-S1-51 isolate of B. liaoningense showed significantly higher acetylene reduction activity in both Glycine max cv. Enrei and Binasoybean-3 varieties and biomass production increased by 9% in the Binasoybean-3 variety. Tha-P2-B1-S1-68 isolate of B. diazoefficiens significantly enhanced shoot length and induced 10% biomass production in Binasoybean-3. These isolates grew at 1-4% NaCl concentration and pH 4.5-10 and survived at 45 °C, making the isolates potential candidates for eco-friendly soybean biofertilizers in salty and tropical regions.

7.
Plant J ; 111(6): 1626-1642, 2022 09.
Article in English | MEDLINE | ID: mdl-35932489

ABSTRACT

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Glucosinolates/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Peptide Hydrolases/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism
8.
Microbes Environ ; 37(2)2022.
Article in English | MEDLINE | ID: mdl-35598988

ABSTRACT

Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as ß-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas, Rhodanobacter, and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.


Subject(s)
Agricultural Inoculants , Burkholderia , Oryza , Agricultural Inoculants/genetics , Burkholderia/genetics , Japan , Phosphates , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
9.
Microbes Environ ; 37(1)2022.
Article in English | MEDLINE | ID: mdl-35082177

ABSTRACT

Spores are a stress-resistant form of Bacillus spp., which include species that are plant growth-promoting rhizobacteria (PGPR). Previous studies showed that the inoculation of plants with vegetative cells or spores exerted different plant growth-promoting effects. To elucidate the spore-specific mechanism, we compared the effects of viable vegetative cells, autoclaved dead spores, and viable spores of Bacillus pumilus TUAT1 inoculated at 107 CFU plant-1 on the growth of the C4 model plant, Setaria viridis A10.1. B. pumilus TUAT1 spores exerted stronger growth-promoting effects on Setaria than on control plants 14 days after the inoculation. Viable spores increased shoot weight, root weight, shoot length, root length, and nitrogen uptake efficiency 21 days after the inoculation. These increases involved primary and crown root formation. Additionally, autoclaved dead spores inoculated at 108 or 109 CFU plant-1 had a positive impact on crown root differentiation, which increased total lateral root length, resulting in a greater biomass and more efficient nitrogen uptake. The present results indicate that an inoculation with viable spores of B. pumilus TUAT1 is more effective at enhancing the growth of Setaria than that with vegetative cells. The plant response to dead spores suggests that the spore-specific plant growth-promoting mechanism is at least partly independent of symbiotic colonization.


Subject(s)
Bacillus pumilus , Bacillus , Setaria Plant , Plant Development , Plant Roots/microbiology , Spores, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...