Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Nat Cell Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849541

ABSTRACT

Transfer RNA dynamics contribute to cancer development through regulation of codon-specific messenger RNA translation. Specific aminoacyl-tRNA synthetases can either promote or suppress tumourigenesis. Here we show that valine aminoacyl-tRNA synthetase (VARS) is a key player in the codon-biased translation reprogramming induced by resistance to targeted (MAPK) therapy in melanoma. The proteome rewiring in patient-derived MAPK therapy-resistant melanoma is biased towards the usage of valine and coincides with the upregulation of valine cognate tRNAs and of VARS expression and activity. Strikingly, VARS knockdown re-sensitizes MAPK-therapy-resistant patient-derived melanoma in vitro and in vivo. Mechanistically, VARS regulates the messenger RNA translation of valine-enriched transcripts, among which hydroxyacyl-CoA dehydrogenase mRNA encodes for a key enzyme in fatty acid oxidation. Resistant melanoma cultures rely on fatty acid oxidation and hydroxyacyl-CoA dehydrogenase for their survival upon MAPK treatment. Together, our data demonstrate that VARS may represent an attractive therapeutic target for the treatment of therapy-resistant melanoma.

2.
Cell Rep ; 43(6): 114325, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38870014

ABSTRACT

The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.

3.
Oncogene ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802646

ABSTRACT

The cancer peptidome has long been known to be altered by genetic mutations. However, more recently, non-genetic polypeptide mutations have also been related to cancer cells. These non-genetic mutations occur post-t30ranscriptionally, leading to the modification of the peptide primary structure, while the corresponding genes remain unchanged. Three main processes participate in the production of these aberrant proteins: mRNA alternative splicing, mRNA editing, and mRNA aberrant translation. In this review, we summarize the molecular mechanisms underlying these processes and the recent findings on the functions of the aberrant proteins, as well as their exploitability as new therapeutic targets due to their specific enrichment in cancer cells. These non-genetic aberrant polypeptides represent a source of novel cancer cell targets independent from their level of mutational burden, still to be exhaustively explored.

4.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759626

ABSTRACT

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Subject(s)
Arginine , Cysteine , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , Proteome , Humans , Cysteine/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Proteome/metabolism , Arginine/metabolism , Mutation , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cisplatin/pharmacology , Cell Line, Tumor , Proteomics/methods , Gene Expression Regulation, Neoplastic , Cell Survival/drug effects , RNA, Transfer/metabolism , RNA, Transfer/genetics
5.
Science ; 384(6697): 785-792, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753784

ABSTRACT

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Subject(s)
Apoptosis , DNA Damage , Protein Biosynthesis , Ribosomes , Tumor Suppressor Protein p53 , Humans , Cell Line, Tumor , Codon/genetics , Leucine/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ribosomes/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism
6.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Article in English | MEDLINE | ID: mdl-38600345

ABSTRACT

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Subject(s)
Colonic Neoplasms , RNA Splicing , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , RNA Splicing/drug effects , Phosphorylation , Cell Line, Tumor , RNA, Messenger/genetics , RNA, Messenger/metabolism , Alternative Splicing , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Phosphatase 2/metabolism , Enzyme Inhibitors/pharmacology
7.
Cancer Cell ; 42(4): 623-645.e10, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38490212

ABSTRACT

Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Neoplasms/genetics
8.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37642941

ABSTRACT

Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and development of resistance to PI3K-AKT-mTOR inhibitors remain major clinical challenges. Here, we show that MYC activation drives resistance to mTOR inhibitors (mTORi) in breast cancer. Multiomic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent Myc amplifications in tumors that acquired resistance to the mTORi AZD8055. MYC activation was associated with biological processes linked to mTORi response and counteracted mTORi-induced translation inhibition by promoting translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred mTORi resistance in mouse and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by the synergistic effects of mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant driver of mTORi resistance that may stratify breast cancer patients for mTOR-targeted therapies.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/drug therapy , MTOR Inhibitors , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases
9.
BMC Cancer ; 23(1): 502, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270525

ABSTRACT

BACKGROUND: Cancer immunotherapy is implemented by identifying antigens that are presented on the cell surface of cancer cells and illicit T-cell response (Schumacher and Schreiber, Science 348:69-74, 2015; Waldman et al., Nat Rev Immunol 20:651-668, 2020; Zhang et al., Front Immunol 12:672,356, 2021b). Classical candidates of such antigens are the peptides resulting from genetic alterations and are named "neoantigen" (Schumacher and Schreiber, Science 348:69-74, 2015). Neoantigens have been widely catalogued across several human cancer types (Tan et al., Database (Oxford) 2020;2020b; Vigneron et al., Cancer Immun 13:15, 2013; Yi et al., iScience 24:103,107, 2021; Zhang et al., BMC Bioinformatics 22:40, 2021a). Recently, a new class of inducible antigens has been identified, namely Substitutants, that are produced as a result of aberrant protein translation (Pataskar et al., Nature 603:721-727, 2022). MAIN: Catalogues of Substitutant expression across human cancer types, their specificity and association to gene expression signatures remain elusive for the scientific community's access. As a solution, we present ABPEPserver, an online database and analytical platform that can visualize a large-scale tumour proteomics analysis of Substitutant expression across eight tumour types sourced from the CPTAC database (Edwards et al., J Proteome Res 14:2707-2713, 2015). Functionally, ABPEPserver offers the analysis of gene-association signatures of Substitutant peptides, a comparison of enrichment between tumour and tumour-adjacent normal tissues, and a list of peptides that serve as candidates for immunotherapy design. ABPEPserver will significantly enhance the exploration of aberrant protein production in human cancer, as exemplified in a case study. CONCLUSION: ABPEPserver is designed on an R SHINY platform to catalogue Substitutant peptides in human cancer. The application is available at https://rhpc.nki.nl/sites/shiny/ABPEP/ . The code is available under GNU General public license from GitHub ( https://github.com/jasminesmn/ABPEPserver ).


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Peptides , Antigens , Immunotherapy , Documentation
10.
Cell Rep Med ; 4(2): 100941, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36812891

ABSTRACT

By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.


Subject(s)
Melanoma , Tryptophan , Humans , Melanoma/pathology , Interferon-gamma/metabolism , T-Lymphocytes/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
11.
Mol Cell ; 83(3): 469-480, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36521491

ABSTRACT

mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.


Subject(s)
Neoplasms , Proteome , Proteome/genetics , Proteome/metabolism , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Peptides/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neoplasms/genetics , Neoplasms/metabolism
12.
Mol Cell ; 82(20): 3840-3855.e8, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36270248

ABSTRACT

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


Subject(s)
Polyadenylation , RNA Isoforms , RNA Isoforms/genetics , 5' Untranslated Regions , 3' Untranslated Regions/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Exonucleases/genetics
14.
Nat Commun ; 13(1): 4578, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931688

ABSTRACT

Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.


Subject(s)
Ovarian Neoplasms , Platinum , Carcinoma, Ovarian Epithelial/drug therapy , Drug Resistance, Neoplasm , Female , Humans , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Platinum/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/pharmacology , Serine/pharmacology
15.
Oncogene ; 41(32): 3953-3968, 2022 08.
Article in English | MEDLINE | ID: mdl-35798875

ABSTRACT

Accumulating evidence identifies non-genetic mechanisms substantially contributing to drug resistance in cancer patients. Preclinical and clinical data implicate the transcriptional co-activators YAP1 and its paralog TAZ in resistance to multiple targeted therapies, highlighting the strong need for therapeutic strategies overcoming YAP1/TAZ-mediated resistance across tumor entities. Here, we show particularly high YAP1/TAZ activity in MITFlow/AXLhigh melanomas characterized by resistance to MAPK pathway inhibition and broad receptor tyrosine kinase activity. To uncover genetic dependencies of melanoma cells with high YAP1/TAZ activity, we used a genome-wide CRISPR/Cas9 functional screen and identified SLC35B2, the 3'-phosphoadenosine-5'-phosphosulfate transporter of the Golgi apparatus, as an essential gene for YAP1/TAZ-driven drug resistance. SLC35B2 expression correlates with tumor progression, and its loss decreases heparan sulfate expression, reduces receptor tyrosine kinase activity, and sensitizes resistant melanoma cells to BRAF inhibition in vitro and in vivo. Thus, targeting heparan sulfation via SLC35B2 represents a novel approach for breaking receptor tyrosine kinase-mediated resistance to MAPK pathway inhibitors.


Subject(s)
Melanoma , Cell Line, Tumor , Drug Resistance, Neoplasm , Heparitin Sulfate/metabolism , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases , Transcription Factors , YAP-Signaling Proteins
16.
Cancer Res ; 82(20): 3637-3649, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35904353

ABSTRACT

Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.


Subject(s)
Antigens, Neoplasm , Neoplasms , Antigens, Neoplasm/genetics , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Mutation , Neoplasms/genetics , Neoplasms/therapy
18.
Trends Genet ; 38(11): 1123-1133, 2022 11.
Article in English | MEDLINE | ID: mdl-35641342

ABSTRACT

Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.


Subject(s)
Frameshifting, Ribosomal , Proteome , Amino Acids/genetics , Codon/genetics , Frameshifting, Ribosomal/genetics , Humans , Proteome/genetics , Ribosomes/genetics , Ribosomes/metabolism
19.
Nature ; 603(7902): 721-727, 2022 03.
Article in English | MEDLINE | ID: mdl-35264796

ABSTRACT

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Subject(s)
Tryptophan-tRNA Ligase , Tryptophan , Codon/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma , Neoplasms/immunology , Phenylalanine , T-Lymphocytes , Tryptophan/metabolism , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
20.
Mol Cell ; 81(22): 4709-4721.e9, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34562372

ABSTRACT

mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis. Despite protein quality control mechanisms, amino acid shortage in melanoma induces aberrant proteins by ribosomal frameshifting. The extent and the underlying mechanisms related to this phenomenon are yet unknown. Here, we show that tryptophan depletion-induced ribosomal frameshifting is a widespread phenomenon in cancer. We termed this event sloppiness and strikingly observed its association with MAPK pathway hyperactivation. Sloppiness is stimulated by RAS activation in primary cells, suppressed by pharmacological inhibition of the oncogenic MAPK pathway in sloppy cells, and restored in cells with acquired resistance to MAPK pathway inhibition. Interestingly, sloppiness causes aberrant peptide presentation at the cell surface, allowing recognition and specific killing of drug-resistant cancer cells by T lymphocytes. Thus, while oncogenes empower cancer progression and aggressiveness, they also expose a vulnerability by provoking the production of aberrant peptides through sloppiness.


Subject(s)
Neoplasms/genetics , Oncogenes , Protein Biosynthesis , RNA, Messenger/metabolism , T-Lymphocytes/cytology , Animals , Carcinogenesis , Cell Membrane/metabolism , Disease Progression , Drug Resistance, Neoplasm , Frameshift Mutation , Frameshifting, Ribosomal , Humans , Immunotherapy/methods , MAP Kinase Signaling System , Melanoma/metabolism , Mice , Neoplasms/metabolism , Peptides/chemistry , Protein Kinase Inhibitors , Ribosomes/metabolism , T-Lymphocytes/metabolism , Tryptophan/chemistry , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...