Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36078246

ABSTRACT

Impaired balance is associated with an increased risk of lower extremity injuries. The purpose of this study was to investigate the relationship between age, anthropometric measurement, and asymmetry index (AI) in an adolescent high school population. Twenty-six male students (15 ± 1.0 years) were randomly selected. Body composition, measurements of vertical jump height using a countermovement jump test (CMJ), and dynamic single stance balance using the Y-balance test (YBT), were collected over 4 weeks. Hierarchical multiple linear regression analyses were used as dimension reduction techniques in four different blocks to determine valid predictors for AIs. In the first regression analysis, controlling for age, body mass, height, and body mass index (BMI), the regression coefficient (B = 0.383, 95% confidence interval [CI] [0.088, 0.679], p < 0.05) associated with body fat indicated that with each additional unit of body fat, the YBT AI increased by 0.383 units. In the second regression analysis, controlling for age, body mass, and BMI, the regression coefficients associated with height (B = -1.692, 95% CI [-3.115, -0.269], p < 0.05] and body fat percentage (B = 0.529, 95% CI [0.075, 0.983], p < 0.05) indicated that with each additional unit of height or body fat percentage, the CMJ AI decreased by 1.692 units and increased by 0.529 units. Grouping participants based on body fat percentage had a significant effect on the AIs (p < 0.05) of the CMJ and YBT. The AI of the CMJ was 15% higher, and that of the YBT was 7% higher in non-obese students than obese students. These findings contribute to the knowledge of the local community and the emerging body of literature on motor skills and competence related to weight in this population.


Subject(s)
Obesity , Physical Fitness , Adolescent , Anthropometry/methods , Body Mass Index , Humans , Male , Obesity/epidemiology , Students
2.
Front Physiol ; 11: 957, 2020.
Article in English | MEDLINE | ID: mdl-32848879

ABSTRACT

The aim of the study was to assess the validity and reliability of wearable body metric Hexoskin "smart shirt" in measuring heart rate (HR) at pre-exercise and during peak effort in a field test incorporating vigorous movements of the upper body. Measurements were recorded simultaneously using the Hexoskin and Polar Team Pro. Nine male professional handball players (age: 21.8 ± 2.4 years; weight: 83 ± 10.26 kg; height: 1.81 ± 0.09 m; and BMI: 25.17 ± 2.23) volitionally participated in the study by completing two 400 m shuttle run test trials (10 shuttles), each separated by a 48 to 72 h recovery period. Results indicated significant correlations between Hexoskin and Polar Team Pro system in pre-exercise HR. Hexoskin provided erroneous measurements in four of the nine athletes during peak effort. Subsequent correction yielded no consistency between the Polar Team Pro system and Hexoskin between the first and the second trial. Hexoskin showed significant reliability in pre-exercise HR. However, Hexoskin picked up excessive artifact during vigorous physical activity in four of the nine athletes rendering the results in these cases useless. Nevertheless, in athletes where artifact was not an issue, ICC yielded a good estimate. The main findings indicate that Hexoskin has good validity and reliability in measuring pre-exercise HR in handball players and hence may be used with high confidence in slow motion activities. However, vigorous physical activity with jarring multidirectional upper body movements posed a challenge for Hexoskin.

SELECTION OF CITATIONS
SEARCH DETAIL
...