Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496452

ABSTRACT

Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood. In this study, we utilized mice that are deficient in toll-like receptor-9 (TLR9), which binds to unmethylated CpG DNA sequences such as those present in bacterial and mitochondrial DNA. To avoid direct pathogen sensing by TLR9, we utilized the influenza virus, which lacks ligands for TLR9, to determine how damage sensing by TLR9 contributes to anti-influenza immunity. Our data show that TLR9-mediated sensing of tissue damage promotes an inflammatory response during early infection, driven by the myeloid cells and associated cytokine responses. Along with the diminished inflammatory response, the absence of damage sensing through TLR9 led to impaired viral clearance manifested as a higher and prolonged influenza burden in the lung. The absence of TLR9 led to extensive infection of myeloid cells including monocytes and macrophages rendering them highly inflammatory, despite having a low initial inflammatory response. The persistent inflammation driven by infected myeloid cells led to persistent lung injury and impaired recovery in influenza-infected TLR9-/- mice. Further, we show elevated circulating TLR9 ligands in the plasma samples of patients with influenza, demonstrating its clinical relevance. Overall, over data show an essential role of damage sensing through TLR9 in promoting anti-influenza immunity.

2.
Immunity ; 56(4): 687-694, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37044059

ABSTRACT

Type 2 immunity defends against macro-parasites and can cause allergic diseases. Our understanding of the mechanisms governing the initiation of type 2 immunity is limited, whereas we know more about type 1 immune responses. Type 2 immunity can be triggered by a wide array of inducers that do not share common features and via diverse pathways and mechanisms. To address the complexity of the type 2 initiation pathways, we suggest a framework that conceptualizes different modes of induction of type 2 immunity. We discuss categories of type 2 inducers and their immunogenicity, types of tissue perturbations that are caused by these inducers, sensing strategies for the initiation of Th2 immune responses, and categorization of the signals that are produced in response to type 2 challenges. We describe tissue-specific examples of functional disruption that could lead to type 2 inflammation and propose that different sensing strategies that operate at the tissue level converge on the initiation of type 2 immune responses.


Subject(s)
Hypersensitivity , Immunity , Humans , Inflammation , Th2 Cells
3.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165196

ABSTRACT

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Murine hepatitis virus , Animals , Bacteria , Cathepsin B , Humans , Lung , Lysosomes , Mice , SARS-CoV-2
4.
Immunity ; 55(5): 895-911.e10, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35483356

ABSTRACT

Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Bacterial Proteins , Humans , Inflammation , Mucins
6.
Cell ; 171(5): 1082-1093.e13, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29033127

ABSTRACT

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.


Subject(s)
DNA Replication , DNA, Mitochondrial/genetics , G-Quadruplexes , Mitochondrial Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Amino Acid Sequence , DNA, Mitochondrial/chemistry , Humans , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Models, Molecular , Transcription Elongation, Genetic , Transcription Factors/chemistry , Transcription Termination, Genetic
7.
Nature ; 540(7632): 270-275, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27919073

ABSTRACT

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Mitochondrial/therapeutic use , Maternal Inheritance/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Replacement Therapy/methods , Mutation , Oocytes/metabolism , Blastocyst/cytology , Blastocyst/metabolism , Cell Line , Conserved Sequence/genetics , DNA, Mitochondrial/biosynthesis , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Haplotypes/genetics , Humans , Male , Meiosis , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/prevention & control , Oocyte Donation , Oocytes/cytology , Oocytes/pathology , Oxidative Phosphorylation , Pedigree , Polymorphism, Genetic
8.
Nucleic Acids Res ; 43(7): 3726-35, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25800739

ABSTRACT

Regulation of transcription of mtDNA is thought to be crucial for maintenance of redox potential and vitality of the cell but is poorly understood at the molecular level. In this study we mapped the binding sites of the core transcription initiation factors TFAM and TFB2M on human mitochondrial RNA polymerase, and interactions of the latter with promoter DNA. This allowed us to construct a detailed structural model, which displays a remarkable level of interaction between the components of the initiation complex (IC). The architecture of the mitochondrial IC suggests mechanisms of promoter binding and recognition that are distinct from the mechanisms found in RNAPs operating in all domains of life, and illuminates strategies of transcription regulation developed at the very early stages of evolution of gene expression.


Subject(s)
Mitochondria/metabolism , Models, Biological , Transcription, Genetic , Humans
9.
Science ; 347(6221): 548-51, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25635099

ABSTRACT

Coordinated replication and expression of the mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mitochondrial DNA copy number can be regulated by the transcription machinery. We found that interaction of human transcription elongation factor TEFM with mitochondrial RNA polymerase and nascent transcript prevents the generation of replication primers and increases transcription processivity and thereby serves as a molecular switch between replication and transcription, which appear to be mutually exclusive processes in mitochondria. TEFM may allow mitochondria to increase transcription rates and, as a consequence, respiration and adenosine triphosphate production without the need to replicate mitochondrial DNA, as has been observed during spermatogenesis and the early stages of embryogenesis.


Subject(s)
DNA Replication , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Directed RNA Polymerases/metabolism , Mitochondrial Proteins/metabolism , RNA/metabolism , Transcription Factors/metabolism , Transcription, Genetic , DNA-Directed RNA Polymerases/chemistry , G-Quadruplexes , Genome, Mitochondrial , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Models, Genetic , Models, Molecular , RNA/chemistry , RNA, Mitochondrial , Transcription Termination, Genetic
10.
Nucleic Acids Res ; 42(6): 3884-93, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24393772

ABSTRACT

The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Transcription Initiation, Genetic , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/chemistry , Humans , Mitochondrial Proteins/metabolism , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Transcription Factors/metabolism
11.
Nat Struct Mol Biol ; 20(11): 1298-303, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24096365

ABSTRACT

Here we report the crystal structure of the human mitochondrial RNA polymerase (mtRNAP) transcription elongation complex, determined at 2.65-Å resolution. The structure reveals a 9-bp hybrid formed between the DNA template and the RNA transcript and one turn of DNA both upstream and downstream of the hybrid. Comparisons with the distantly related RNA polymerase (RNAP) from bacteriophage T7 indicates conserved mechanisms for substrate binding and nucleotide incorporation but also strong mechanistic differences. Whereas T7 RNAP refolds during the transition from initiation to elongation, mtRNAP adopts an intermediary conformation that is capable of elongation without refolding. The intercalating hairpin that melts DNA during T7 RNAP initiation separates RNA from DNA during mtRNAP elongation. Newly synthesized RNA exits toward the pentatricopeptide repeat (PPR) domain, a unique feature of mtRNAP with conserved RNA-recognition motifs.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , Crystallography, X-Ray , DNA, Mitochondrial/chemistry , Humans , Protein Conformation , RNA/chemistry , RNA, Mitochondrial
SELECTION OF CITATIONS
SEARCH DETAIL
...