Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 203(5): 2087-2099, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33598807

ABSTRACT

Chronic exposures to tobacco and biomass smoke are the most prevalent risk factors for COPD development. Although microbial diversity in tobacco smoke-associated COPD (TSCOPD) has been investigated, microbiota in biomass smoke-associated COPD (BMSCOPD) is still unexplored. We aimed to compare the nasal and oral microbiota between healthy, TSCOPD, and BMSCOPD subjects from a rural population in India. Nasal swabs and oral washings were collected from healthy (n = 10), TSCOPD (n = 11), and BMSCOPD (n = 10) subjects. The downstream analysis was performed using QIIME pipeline (v1.9). In nasal and oral microbiota no overall differences were noted, but there were key taxa that had differential abundance in either Healthy vs COPD and/or TSCOPD vs. BMSCOPD. Genera such as Actinomyces, Actinobacillus, Megasphaera, Selenomonas, and Corynebacterium were significantly higher in COPD subjects. This study suggests that microbial community undergoes dysbiosis which may further contribute to the progression of disease. Thus, it is important to identify etiological agents for such a polymicrobial alterations which contribute highly to the disease manifestation.


Subject(s)
Dysbiosis/complications , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/microbiology , Smoke/adverse effects , Tobacco Smoke Pollution/adverse effects , Adult , Aged , Humans , India , Male , Microbiota/physiology , Middle Aged , Nose/microbiology , Pulmonary Disease, Chronic Obstructive/chemically induced , Risk Factors
2.
Sci Rep ; 10(1): 5685, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32231240

ABSTRACT

The human microbiome plays a key role in maintaining host homeostasis and is influenced by age, geography, diet, and other factors. Traditionally, India has an established convention of extended family arrangements wherein three or more generations, bound by genetic relatedness, stay in the same household. In the present study, we have utilized this unique family arrangement to understand the association of age with the microbiome. We characterized stool, oral and skin microbiome of 54 healthy individuals from six joint families by 16S rRNA gene-based metagenomics. In total, 69 (1.03%), 293 (2.68%) and 190 (8.66%) differentially abundant OTUs were detected across three generations in the gut, skin and oral microbiome, respectively. Age-associated changes in the gut and oral microbiome of patrilineal families showed positive correlations in the abundance of phyla Proteobacteria and Fusobacteria, respectively. Genera Treponema and Fusobacterium showed a positive correlation with age while Granulicatella and Streptococcus showed a negative correlation with age in the oral microbiome. Members of genus Prevotella illustrated high abundance and prevalence as a core OTUs in the gut and oral microbiome. In conclusion, this study highlights that precise and perceptible association of age with microbiome can be drawn when other causal factors are kept constant.


Subject(s)
Age Factors , Microbiota/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Bacteria/genetics , Child , Child, Preschool , Family , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , India/epidemiology , Male , Metagenome/genetics , Metagenomics/methods , Middle Aged , Mouth/microbiology , RNA, Ribosomal, 16S/genetics , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...