Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Microbiol ; 22(2): e13140, 2020 02.
Article in English | MEDLINE | ID: mdl-31736226

ABSTRACT

Hypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia. Transcriptome analysis of ifu5Δ/Δ under normoxia shows a significant up-regulation of the hypoxic regulator EFG1 and EFG1-dependent genes. We demonstrate physical interaction between Ifu5 by virtue of its WW domain and Efg1 that represses EFG1 expression under normoxia. This interaction is lost under hypoxic growth conditions, relieving EFG1 repression. Hypoxic adaptation processes such as filamentation and biofilm formation are affected in ifu5Δ/Δ cells revealing the role of Ifu5 in hypoxic signalling and modulating pathogenicity traits of C. albicans under varied oxygen conditions. Additionally, the WW domain of Ifu5 facilitates its role in hypoxic adaptation, revealing the importance of this domain in providing a platform to integrate various cellular processes. These data forge a relationship between Efg1 and Ifu5 that fosters the role of Ifu5 in hypoxic adaptation thus illuminating novel strategies to undermine the growth of C. albicans.


Subject(s)
Candida albicans/pathogenicity , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Transcription Factors/metabolism , Virulence Factors/metabolism , Gene Expression Regulation, Fungal , Hyphae , Virulence , WW Domains
2.
Biochim Biophys Acta Gen Subj ; 1861(12): 3238-3245, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28941926

ABSTRACT

Defending phagocyte generated oxidants is the key for survival of Salmonella Typhimurium (S. Typhimurium) inside the host. Met residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO). Methionine sulfoxide reductase (Msr) can repair Met-SO to Met thus restoring the function(s) of Met-SO containing proteins. Using pull down method we have identified several MsrA interacting proteins in the S. Typhimurium, one of them was malate synthase (MS). MS is an enzyme of glyoxylate cycle. This cycle is essential for survival of S. Typhimurium inside the host under nutrient limiting conditions. By employing in vitro cross-linking and blot overlay techniques we showed that purified MsrA interacted with pure MS. Treatment of pure malate synthase with H2O2 resulted in reduction of MS activity. However, MsrA along with thioredoxin-thioredoxin reductase system partially restored the activity of oxidized MS. Our mass spectrometry data demonstrated H2O2 mediated oxidation and MsrA mediated repair of Met residues in MS. Further in comparison to S. Typhimurium, the msrA gene deletion (∆msrA) strain showed reduced (60%) malate synthase specific activity. Oral inoculation with wild type, ∆msrA and ∆ms strains of S. Typhimurium resulted in colonization of 100, 0 and 40% of the poultry respectively.


Subject(s)
Chickens/microbiology , Methionine Sulfoxide Reductases/physiology , Salmonella typhimurium/enzymology , Animals , Malate Synthase/metabolism
3.
Int J Dev Biol ; 61(1-2): 81-88, 2017.
Article in English | MEDLINE | ID: mdl-27528045

ABSTRACT

Generation of pluripotent stem cells by reprogramming somatic cells of quality animals has numerous potential applications in agricultural and biomedical sciences. Unfortunately, till now, reprogramming of buffalo fetal fibroblast cells (bFFs) has been very ineffient despite intensive efforts. Here, we attempted to enhance reprogramming efficiency by using the HDAC inhibitor valproic acid (VPA) in bFFs transfected with pLentG-KOSM pseudo virus carrying mouse specific pluripotent genes. FACS analysis revealed that VPA treatment significantly increased (p < 0.05) GFP+ cells in comparison to VPA untreated control. Further, among different concentrations, 1.5 mM VPA was found to be optimal, increasing about 5 fold GFP+ cells and 2.5-fold GFP+ colonies with significantly (P < 0.05) larger size as compared to control. These colonies were further propagated and characterised. The colonies displayed embryonic stem cell (ESC)-like morphology, normal karyotype, and were positive for alkaline phosphatase staining as well as immune-positive for the ESC specific markers Oct4, Nanog, SSEA1, TRA-1-60 and TRA-1-81. The primary colonies revealed significantly higher (P < 0.05) expression of pluripotent genes than control, which declined gradually on subsequent passages. The reprogrammed cells readily formed embryoid bodies in vitro and cells of all three germ layers. These results indicated that VPA treatment of viral transducted cells can improve the generation of induced pluripotent stem cells and help their long term maintenance in buffalo.


Subject(s)
Cellular Reprogramming/drug effects , Fibroblasts/drug effects , Induced Pluripotent Stem Cells/drug effects , Valproic Acid/pharmacology , Alkaline Phosphatase/metabolism , Animals , Buffaloes , Fibroblasts/cytology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism
4.
Tissue Cell ; 48(6): 653-658, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27423985

ABSTRACT

Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the "support tissues" in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5-7days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/genetics , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Adipogenesis/genetics , Animals , Cell Separation , Dogs , Goats , Humans , Osteogenesis/genetics
5.
Immunobiology ; 220(12): 1322-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26224245

ABSTRACT

Salmonella Typhimurium (ST) must evade neutrophil assault for infection establishment in the host. Myeloperoxidase generated HOCl is the key antimicrobial agent produced by the neutrophils; and methionine (Met) residues are the primary targets of this oxidant. Oxidation of Mets leads to methionine sulfoxide (Met-SO) formation and consequently compromises the protein function(s). Methionine sulfoxide reductase A (MsrA) reductively repairs Met-SO to Mets. In this manner, MsrA maintains the function(s) of key proteins which are important for virulence of ST and enhance the survival of this bacterium under oxidative stress. We constructed msrA gene deletion strain (ΔmsrA). The primers located in the flanking regions to ΔmsrA gene amplified 850 and 300 bp amplicons in ST and ΔmsrA strains, respectively. The ΔmsrA strain grew normally in in vitro broth culture. However, ΔmsrA strain showed high susceptibility (p<0.001) to very low concentrations of HOCl which was restored (at least in part) by plasmid based complementation. ΔmsrA strain was hypersensitive (than ST) to the granules isolated from neutrophils. Further, the ΔmsrA strain was significantly (p<0.05) more susceptible to neutrophil mediated killing.


Subject(s)
Methionine Sulfoxide Reductases/genetics , Microbial Viability/genetics , Microbial Viability/immunology , Neutrophils/microbiology , Neutrophils/physiology , Oxidative Stress , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Gene Order , Genetic Complementation Test , Genetic Loci , Hydrogen Peroxide/pharmacology , Peroxidase/metabolism , Salmonella typhimurium/growth & development , Sequence Deletion
6.
Cell Biol Int ; 38(8): 953-61, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24687727

ABSTRACT

Neural stem cells (NSCs) can self-renew and give rise to neurons, astrocytes and oligodendrocytes; they are found in the nervous system of mammalian organisms, representing a promising resource for both fundamental research and therapeutics. There have been few investigations on NSCs in the livestock species. Therefore, we have successfully isolated and characterised NSCs from the foetal brain of a small domestic animal, the goat (called GNSCs). These cells from the foetal brain showed self-renewal, rapid proliferation with a population doubling time of 88 h, were morphologically homogeneous and maintained normal chromosome throughout the culture period. The cells expressed NSC-specific markers (Sox2, Pax6 and Mushashi), but were negative for CD34 and CD45. They were capable of multi-differentiation into neurons, astrocytes, oligodendrocytes, as well as adipocytes and osteocytes. The availability of such cells may hold great interest for basic and applied neuroscience.


Subject(s)
Neural Stem Cells/physiology , Animals , Antigens, Differentiation/metabolism , Cell Differentiation , Cell Proliferation , Cell Separation , Cells, Cultured , Goats
7.
Theriogenology ; 81(6): 854-60, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24507961

ABSTRACT

The present work was carried out to investigate the global gene expression profile to search differentially expressed candidate transcripts between parthenogenetic and in vitro-fertilized (IVF) caprine morula. For this study, total RNA was isolated from diploid parthenogenetic and IVF embryos, and complementary DNA was synthesized. Microarray and relative real-time polymerase chain reaction analysis were performed to check global gene expression profile and validation, respectively. According to the microarray analysis, the total number of upregulated (UR) and downregulated (DR) genes was 613 and 220, respectively in diploid parthenogenetic morula as compared with IVF morula. The number of genes showing about two-, two- to five-, five- to 10-, 10- to 20-, and above 20-fold UR and DR genes was 147, 229, 122, 59, and 56 and 94, 73, 18, 13, and 22, respectively. Five UR genes validated (PTEN, PHF3, CTNNB1, SELK, and NPDC1) and all of them were significantly higher in parthenotes, which was in accordance with microarray results, whereas the expression of DR (AURKC and KLF15) genes were downregulated in parthenotes as observed in microarray results but the difference was not significant (P < 0.05). In conclusion, our findings demonstrate differential expression of a large number of genes in parthenotes compared with IVF embryos, which may be the reason for aberrant parthenogenetic embryo development in caprine species.


Subject(s)
Embryo, Mammalian/metabolism , Goats/genetics , Parthenogenesis/genetics , Animals , Fertilization in Vitro/veterinary , Gene Expression Profiling , In Vitro Oocyte Maturation Techniques , Oligonucleotide Array Sequence Analysis , Oocytes/growth & development , Oocytes/metabolism
8.
Int J Neurosci ; 124(6): 450-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24094244

ABSTRACT

Neural stem cells (NSCs) are primordial, uncommitted cells postulated to give rise to the array of more specialized cells of the central nervous system (CNS). NSCs can self-renew and give rise to neurons, astrocytes and oligodendrocytes. NSCs are found in the CNS of mammalian organisms, and represent a promising resource for both fundamental research and CNS repair. Animal models of CNS damage have highlighted the potential benefit of NSC-based approaches. Present study described that buffalo neural stem cells (Bu-NSCs) were isolated and expanded rapidly from buffalo fetal brain in adherent culture. They were capable of multidifferentiation into neurons, astrocytes, and oligodendrocytes. Bu-NSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 128.16 h. Normal buffalo karyotype was unchanged throughout the in vitro culture period. Together, we have isolated and cultured Bu-NSC from fetal brain that showed self-renewal, rapid proliferation and ability to differentiate into cells of nervous system. The availability of such cells may hold great interest for basic and applied neuroscience.


Subject(s)
Buffaloes , Cell Physiological Phenomena/physiology , Fetus/cytology , Neural Stem Cells/cytology , Animals , Cells, Cultured , Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...