Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Plant Sci ; 13: 1001394, 2022.
Article in English | MEDLINE | ID: mdl-36531349

ABSTRACT

Experiments were conducted to evaluate the effectivity of Tagetes erecta L. leachates on various growth, physiological, and biochemical parameters of wheat at different stages of growth. Results suggested that Triticum aestivum L. seedlings/plants when exposed to higher concentrations of marigold leachates (10%, 20%, and 30% w/v of fresh parts and 5% and 10% w/v of dry parts) exhibited enhanced lipid peroxidation along with an increase in the activity of protease and phenylalanine ammonia lyase. Treatment with higher concentrations of leachates of fresh (30% w/v) and dry (10% w/v) T. erecta upregulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione S-transferase, and glutathione reductase and also increased the non-enzymatic components of antioxidant defense such as glutathione, ascorbic acid, and total phenols along with osmotic constituents comprising free proline, free sugars, and free amino acids in wheat. The growth and yield attributes of wheat exhibited a slight increase at treatments with lower concentrations (1% w/v) of dry leachates, whereas a decrease was recorded at higher concentrations (10% w/v). In general, treatments with flower leachates (higher concentrations) showed greater influence as compared with those with leaf leachates. Identification and understanding the mechanism of function of allelochemicals in these leachates may pave a way for further experimentation on Tagetes erecta L crop while it is cultivated and decomposed in the field.

2.
Physiol Plant ; 172(2): 1149-1161, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33314117

ABSTRACT

This report discusses water stress-induced changes and their amelioration by added potassium in Sorghum bicolor L. Chlorophylls, carotenoids, and the activity of nitrogen metabolizing enzymes viz., nitrate reductase, alanine aminotransferase and aspartate aminotransferase were adversely affected under water stress and restricted irrigation. Osmotic as well as water stress trigger ROS production while potassium ameliorated these changes to some extent and increased the activity of SOD, CAT, APX, and GR and the contents of GSH and AsA. Water stress-induced changes ultimately reflecting on growth and yield parameters like plant height, biomass yield, grain yield, days to flowering, and days to maturity. Added potassium affected these parameters positively, both under normal and stress conditions, indicating the use of potassium as a tool for mitigating the water stress induced deleterious changes in sorghum to some extent by enhancing the nitrogen use efficiency and strengthening the enzymatic and non-enzymatic antioxidant components. The results obtained here exhibited similar trends in seedlings and plants raised in sand cultures and field conditions, making them more meaningful and comprehensible.


Subject(s)
Sorghum , Antioxidants , Dehydration , Dietary Supplements , Plant Leaves , Potassium
SELECTION OF CITATIONS
SEARCH DETAIL
...