Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Res J (Isfahan) ; 16(1): 24-28, 2019.
Article in English | MEDLINE | ID: mdl-30745915

ABSTRACT

BACKGROUND: The antimicrobial property of Tinospora cordifolia has been tested against a variety of microorganisms in the literature. The present study aimed to assess the antimicrobial activity of different concentrations of commercially available T. cordifolia powder against Streptococcus mutans. MATERIALS AND METHODS: An in vitro study was undertaken in which extract of T. cordifolia was obtained using 100% ethanol by maceration. Seven different concentrations were prepared and tested against S. mutans in brain-heart infusion agar medium. Plates were incubated aerobically at 37°C for 48 h, and zone of inhibition was measured using Vernier caliper. 0.2% chlorhexidine and dimethylformamide were used as positive and negative controls respectively. The data were analysed by descriptive analytic tests. RESULTS: The maximum antibacterial activity of T. cordifolia was observed with a volume of 40 µl at 2% concentration with a zone of inhibition of 19 mm. A 30 µl volume of 0.2% chlorhexidine showed a zone of inhibition of 28 mm, and no zone of inhibition was observed with dimethylformamide. CONCLUSION: Tinospora exhibited antimicrobial activity against S. mutans. However, it needs to be confirmed further with in vivo studies.

2.
J Mater Sci Mater Med ; 29(9): 144, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30155669

ABSTRACT

This paper reports the corrosion resistant and cytocompatible properties of the hyaluronic acid-silane coating on AZ31 Mg alloy. In this study, the osteoinductive properties of high molecular weight hyaluronic acid (HA, 1-4 MDa) and the corrosion protection of silane coatings were incorporated as a composite coating on biodegradable AZ31 Mg alloy for orthopaedic applications. The multi-step fabrication of coatings first involved dip coating of a passivated AZ31 Mg alloy with a methyltriethoxysilane-tetraethoxysilane sol-gel to deposit a dense, cross-linked and corrosion resistant silane coating (AZ31-MT). The second step was to create an amine-functionalised surface by treating coated alloy with 3-aminopropyl-triethoxy silane (AZ31-MT-A) which facilitated the immobilisation of HA via EDC-NHS coupling reactions at two different concentrations i.e 1 mg.ml-1 (AZ31-MT-A-HA1) and 2 mg.ml-1 (AZ31-MT-A-HA2). These coatings were characterised by Fourier transform infrared spectroscopy, atomic force microscopy and static contact angle measurements which confirmed the successful assembly of the full coatings onto AZ31 Mg alloy. The influence of HA-silane coating on the corrosion of Mg alloy was investigated by electrical impedance spectroscopy and long-term immersion studies measurements in HEPES buffered DMEM. The results showed an enhanced corrosion resistance of HA functionalised silane coated AZ31 substrate over the uncoated equivalent alloy. Furthermore, the cytocompatibility of MC3T3-E1 osteoblasts was evaluated on HA-coated AZ31-MT-A substrates by live-dead staining, quantification of total cellular DNA content, scanning electron microscope and alkaline phosphatase activity. The results showed HA concentration-dependent improvement of osteoblast cellular response in terms of enhanced cell adhesion, proliferation and differentiation. These findings hold great promise in employing such biomimetic multifunctional coatings to improve the corrosion resistance and cytocompatibility of biodegradable Mg-based alloy for orthopaedic applications.


Subject(s)
Alloys/chemistry , Biocompatible Materials , Hyaluronic Acid/chemistry , Magnesium Compounds/chemistry , Silanes/chemistry , 3T3 Cells , Animals , Cell Survival , Electrochemistry , Hydrogen/chemistry , Hydrogen-Ion Concentration , Materials Testing , Mice , Osteoblasts , Prostheses and Implants , Surface Properties
3.
ACS Biomater Sci Eng ; 4(11): 3874-3884, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-33429610

ABSTRACT

The quality of patient care has increased dramatically in recent years because of the development of lightweight orthopedic metal implants. The success of these orthopedic implants may be compromised by impaired cytocompatibility and osteointegration. Biomimetic surface engineering of metal implants using biomacromolecules including hyaluronic acid (HA) has been used an effective approach to provide conditions favorable for the growth of bone forming cells. To date, there have been limited studies on osteoblasts functions in response to metal substrates modified with the hyaluronic acid of different molecular weight for orthopedic applications. In this study, we evaluated the osteoblasts functions such as adhesion, proliferation, and differentiation in response to high- and low-molecular-weight HA (denoted as h-HA and l-HA, respectively) functionalized on Ti (h-HA-Ti and l-HA-Ti substrates, respectively) and corrosion-resistant silane coated-AZ31 Mg alloys (h-HA-AZ31 and l-HA-AZ31). The DNA quantification study showed that adhesion and proliferation of osteoblasts were significantly decreased by h-HA immobilized on Ti or AZ31 substrates when compared to low-molecular-weight counterpart over a period of 14 days. On the contrary, h-HA significantly increased the osteogenic differentiation of osteoblast over l-HA, as confirmed by the enhanced expression of ALP, total collagen, and mineralization of extracellular matrix. In particular, the h-HA-AZ31 substrates greatly enhanced the osteoblast differentiation among tested samples (l-HA-AZ31, l-HA-Ti, h-HA-Ti, and Ti alone), which is ascribed to the osteoinductive activity of h-HA, relatively up-regulated intracellular Ca2+ ([Ca2+]i) and Mg2+ ([Mg2+]i) concentrations as well as the alkalization of the cell culture medium. This study suggesting that HA of appropriate molecular weight can be successfully used to modify the surface of metal implants for orthopedic applications.

4.
ACS Biomater Sci Eng ; 3(12): 3244-3253, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-33445367

ABSTRACT

This study presents the covalent grafting of a hyaluronic acid-lysozyme (HA-LZ) composite onto corrosion-resistant silane-coated AZ31 Mg alloy via EDC-NHS coupling reactions. The HA-LZ composite coatings created a smooth and hydrophilic surface with the increased concentration of functional lysozyme complexed to the hyaluronic acid. This was confirmed by the measurement of AFM, water contact angle, and quantification of hyaluronic acid and lysozyme. The colonization of S.aureus on HA-LZ composite-coated substrates was significantly reduced as compared to the hyaluronic acid, lysozyme coated and uncoated AZ31 controls. Such activity is due to the enhanced antibacterial activity of lysozyme component as observed from the spread plate assay, propidium iodide staining, and scanning electron microscopy. Furthermore, morphology of the osteoblast cells, alkaline phosphatase activity and DNA quantification studies demonstrated the improved biocompatibility and osteoinductive properties of HA-LZ-coated substrates. This was verified by comparing with the lysozyme coated and uncoated AZ31 substrates in terms of cell adhesion, proliferation, and differentiation of osteoblastic cells. Therefore, such multifunctional composite coatings with antibacterial and osteoinductive properties are promising can be potentially used for the surface modifications of orthopedic implants.

5.
Mater Sci Eng C Mater Biol Appl ; 68: 948-963, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27524097

ABSTRACT

Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications.


Subject(s)
Absorbable Implants , Alloys , Biomimetics/methods , Magnesium/chemistry , Materials Testing/methods , Alloys/chemistry , Alloys/therapeutic use , Animals , Corrosion , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...