Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 181(15): 2622-2635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38613158

ABSTRACT

BACKGROUND AND PURPOSE: In human airway smooth muscle (hASM) cells, not all receptors stimulating cAMP production elicit the same effects. This can only be explained if cAMP movement throughout the cell is restricted, yet the mechanisms involved are not fully understood. Phosphodiesterases (PDEs) contribute to compartmentation of many cAMP responses, but PDE activity alone is predicted to be insufficient if cAMP is otherwise freely diffusible. We tested the hypothesis that buffering of cAMP by protein kinase A (PKA) associated with A kinase anchoring proteins (AKAPs) slows cAMP diffusion and that this contributes to receptor-mediated, compartmentalized responses. EXPERIMENTAL APPROACH: Raster image correlation spectroscopy (RICS) was used to measure intracellular cAMP diffusion coefficients and evaluate the contribution of PKA-AKAP interactions. Western blotting and immunocytochemistry were used to identify the AKAPs involved. RNA interference was used to down-regulate AKAP expression and determine its effects on cAMP diffusion. Compartmentalized cAMP responses were measured using fluorescence resonance energy transfer (FRET) based biosensors. KEY RESULTS: Cyclic AMP movement was significantly slower than that of free-diffusion in hASM cells, and disrupting PKA-AKAP interactions significantly increased the diffusion coefficient. PKA associated with the outer mitochondrial membrane appears to play a prominent role in this effect. Consistent with this idea, knocking down expression of D-AKAP2, the primary mitochondrial AKAP, increased cAMP diffusion and disrupted compartmentation of receptor-mediated responses. CONCLUSION AND IMPLICATIONS: Our results confirm that AKAP-anchored PKA contributes to the buffering of cAMP and is consequential in the compartmentation of cAMP responses in hASM cells.


Subject(s)
A Kinase Anchor Proteins , Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Myocytes, Smooth Muscle , Signal Transduction , Humans , Cyclic AMP/metabolism , A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Diffusion , Fluorescence Resonance Energy Transfer
2.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106015

ABSTRACT

Seemingly unrelated traits often share the same underlying molecular mechanisms, potentially generating a pleiotropic relationship whereby selection shaping one trait can simultaneously compromise another. While such functional trade-offs are expected to influence evolutionary outcomes, their actual relevance in nature is masked by obscure links between genotype, phenotype, and fitness. Here, we describe functional trade-offs that likely govern a key adaptation and coevolutionary dynamics in a predator-prey system. Several garter snake (Thamnophis spp.) populations have evolved resistance to tetrodotoxin (TTX), a potent chemical defense in their prey, toxic newts (Taricha spp.). Snakes achieve TTX resistance through mutations occurring at toxin-binding sites in the pore of snake skeletal muscle voltage-gated sodium channels (NaV1.4). We hypothesized that these mutations impair basic NaV functions, producing molecular trade-offs that should ultimately scale up to compromised organismal performance. We investigate biophysical costs in two snake species with unique and independently evolved mutations that confer TTX resistance. We show electrophysiological evidence that skeletal muscle sodium channels encoded by toxin-resistant alleles are functionally compromised. Furthermore, skeletal muscles from snakes with resistance genotypes exhibit reduced mechanical performance. Lastly, modeling the molecular stability of these sodium channel variants partially explains the electrophysiological and muscle impairments. Ultimately, adaptive genetic changes favoring toxin resistance appear to negatively impact sodium channel function, skeletal muscle strength, and organismal performance. These functional trade-offs at the cellular and organ levels appear to underpin locomotor deficits observed in resistant snakes and may explain variation in the population-level success of toxin-resistant alleles across the landscape, ultimately shaping the trajectory of snake-newt coevolution.

3.
Cell Signal ; 89: 110172, 2022 01.
Article in English | MEDLINE | ID: mdl-34687901

ABSTRACT

Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.


Subject(s)
Cyclic AMP , Myocytes, Cardiac , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction/physiology
4.
Physiol Rep ; 9(17): e15015, 2021 09.
Article in English | MEDLINE | ID: mdl-34514737

ABSTRACT

Compartmentation of cAMP signaling is a critical factor for maintaining the integrity of receptor-specific responses in cardiac myocytes. This phenomenon relies on various factors limiting cAMP diffusion. Our previous work in adult rat ventricular myocytes (ARVMs) indicates that PKA regulatory subunits anchored to the outer membrane of mitochondria play a key role in buffering the movement of cytosolic cAMP. PKA can be targeted to discrete subcellular locations through the interaction of both type I and type II regulatory subunits with A-kinase anchoring proteins (AKAPs). The purpose of this study is to identify which AKAPs and PKA regulatory subunit isoforms are associated with mitochondria in ARVMs. Quantitative PCR data demonstrate that mRNA for dual specific AKAP1 and 2 (D-AKAP1 & D-AKAP2), acyl-CoA-binding domain-containing 3 (ACBD3), optic atrophy 1 (OPA1) are most abundant, while Rab32, WAVE-1, and sphingosine kinase type 1 interacting protein (SPHKAP) were barely detectable. Biochemical and immunocytochemical analysis suggests that D-AKAP1, D-AKAP2, and ACBD3 are the predominant mitochondrial AKAPs exposed to the cytosolic compartment in these cells. Furthermore, we show that both type I and type II regulatory subunits of PKA are associated with mitochondria. Taken together, these data suggest that D-AKAP1, D-AKAP2, and ACBD3 may be responsible for tethering both type I and type II PKA regulatory subunits to the outer mitochondrial membrane in ARVMs. In addition to regulating PKA-dependent mitochondrial function, these AKAPs may play an important role by buffering the movement of cAMP necessary for compartmentation.


Subject(s)
A Kinase Anchor Proteins/biosynthesis , Cyclic AMP-Dependent Protein Kinases/biosynthesis , Heart Ventricles/enzymology , Mitochondria/enzymology , Myocytes, Cardiac/enzymology , Animals , Cells, Cultured , Heart Ventricles/cytology , Male , Rats , Rats, Sprague-Dawley
5.
Br J Pharmacol ; 178(7): 1574-1587, 2021 04.
Article in English | MEDLINE | ID: mdl-33475150

ABSTRACT

BACKGROUND AND PURPOSE: In cardiac myocytes, cyclic AMP (cAMP) produced by both ß1 - and ß2 -adrenoceptors increases L-type Ca2+ channel activity and myocyte contraction. However, only cAMP produced by ß1 -adrenoceptors enhances myocyte relaxation through phospholamban-dependent regulation of the sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2). Here we have tested the hypothesis that stimulation of ß2 -adrenoceptors produces a cAMP signal that is unable to reach SERCA2 and determine what role, if any, phosphodiesterase (PDE) activity plays in this compartmentation. EXPERIMENTAL APPROACH: The cAMP responses produced by ß1 -and ß2 -adrenoceptor stimulation were studied in adult rat ventricular myocytes using two different fluorescence resonance energy transfer (FRET)-based biosensors, the Epac2-camps, which is expressed uniformly throughout the cytoplasm of the entire cell and the Epac2-αKAP, which is targeted to the SERCA2 signalling complex. KEY RESULTS: Selective activation of ß1 - or ß2 -adrenoceptors produced cAMP responses detected by Epac2-camps. However, only stimulation of ß1 -adrenoceptors produced a cAMP response detected by Epac2-αKAP. Yet, stimulation of ß2 -adrenoceptors was able to produce a cAMP signal detected by Epac2-αKAP in the presence of selective inhibitors of PDE2 or PDE3, but not PDE4. CONCLUSION AND IMPLICATIONS: These results support the conclusion that cAMP produced by ß2 -adrenoceptor stimulation was not able to reach subcellular locations where the SERCA2 pump is located. Furthermore, this compartmentalized response is due at least in part to PDE2 and PDE3 activity. This discovery could lead to novel PDE-based therapeutic treatments aimed at correcting cardiac relaxation defects associated with certain forms of heart failure.


Subject(s)
Cyclic AMP , Myocytes, Cardiac , Animals , Heart Ventricles , Phosphoric Diester Hydrolases , Rats , Receptors, Adrenergic, beta-1 , Receptors, Adrenergic, beta-2
6.
J Pharmacol Exp Ther ; 370(1): 104-110, 2019 07.
Article in English | MEDLINE | ID: mdl-31068382

ABSTRACT

ß 2-Adrenoceptors (ß 2ARs) are concentrated in caveolar lipid raft domains of the plasma membrane in airway smooth-muscle (ASM) cells, along with adenylyl cyclase type 6 (AC6). This is believed to contribute to how these receptors can selectively regulate certain types of cAMP-dependent responses in these cells. The goal of the present study was to test the hypothesis that ß 2AR production of cAMP is localized to specific subcellular compartments using fluorescence resonance energy transfer-based cAMP biosensors targeted to different microdomains in human ASM cells. Epac2-MyrPalm and Epac2-CAAX biosensors were used to measure responses associated with lipid raft and nonraft regions of the plasma membrane, respectively. Activation of ß 2ARs with isoproterenol produced cAMP responses that are most readily detected in lipid raft domains. Furthermore, overexpression of AC6 somewhat paradoxically inhibited ß 2AR production of cAMP in lipid raft domains without affecting ß 2AR responses detected in other subcellular locations or cAMP responses to EP2 prostaglandin receptor activation, which were confined primarily to nonraft domains of the plasma membrane. The inhibitory effect of overexpressing AC6 was blocked by inhibition of phosphodiesterase type 4 (PDE4) activity with rolipram, inhibition of protein kinase A (PKA) activity with H89, and inhibition of A kinase anchoring protein (AKAP) interactions with the peptide inhibitor Ht31. These results support the idea that overexpression of AC6 leads to enhanced feedback activation of PDE4 via phosphorylation by PKA that is part of an AKAP-dependent signaling complex. This provides insight into the molecular basis for localized regulation of cAMP signaling in human ASM cells.


Subject(s)
Adenylyl Cyclases/metabolism , Bronchi/cytology , Cyclic AMP/biosynthesis , Myocytes, Smooth Muscle/metabolism , Receptors, Adrenergic, beta-2/metabolism , Trachea/cytology , Adrenergic beta-2 Receptor Agonists/pharmacology , Humans , Isoproterenol/pharmacology , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects
7.
Front Pharmacol ; 9: 332, 2018.
Article in English | MEDLINE | ID: mdl-29740315

ABSTRACT

Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that ß-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.

8.
Mol Pharmacol ; 93(4): 270-276, 2018 04.
Article in English | MEDLINE | ID: mdl-29217670

ABSTRACT

It is widely accepted that cAMP signaling is compartmentalized within cells. However, our knowledge of how receptors, cAMP signaling enzymes, effectors, and other key proteins form specific signaling complexes to regulate specific cell responses is limited. The multicomponent nature of these systems and the spatiotemporal dynamics involved as proteins interact and move within a cell make cAMP responses highly complex. Adenylyl cyclases, the enzymatic source of cAMP production, are key starting points for understanding cAMP compartments and defining the functional signaling complexes. Three basic elements are required to form a signaling compartment. First, a localized signal is generated by a G protein-coupled receptor paired to one or more of the nine different transmembrane adenylyl cyclase isoforms that generate the cAMP signal in the cytosol. The diffusion of cAMP is subsequently limited by several factors, including expression of any number of phosphodiesterases (of which there are 24 genes plus spice variants). Finally, signal response elements are differentially localized to respond to cAMP produced within each locale. A-kinase-anchoring proteins, of which there are 43 different isoforms, facilitate this by targeting protein kinase A to specific substrates. Thousands of potential combinations of these three elements are possible in any given cell type, making the characterization of cAMP signaling compartments daunting. This review will focus on what is known about how cells organize cAMP signaling components as well as identify the unknowns. We make an argument for adenylyl cyclases being central to the formation and maintenance of these signaling complexes.


Subject(s)
Adenylyl Cyclases/metabolism , Cell Compartmentation/physiology , Cyclic AMP/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , Humans
9.
Br J Pharmacol ; 174(16): 2784-2796, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28603838

ABSTRACT

BACKGROUND AND PURPOSE: Previous studies indicate that prostaglandin EP2 receptors selectively couple to AC2 in non-lipid raft domains of airway smooth muscle (ASM) cells, where they regulate specific cAMP-dependent responses. The goal of the present study was to identify the cellular microdomains where EP2 receptors stimulate cAMP production. EXPERIMENTAL APPROACH: FRET-based cAMP biosensors were targeted to different subcellular locations of primary human ASM cells. The Epac2-camps biosensor, which expresses throughout the cell, was used to measure bulk cytoplasmic responses. Epac2-MyrPalm and Epac2-CAAX were used to measure responses associated with lipid raft and non-raft regions of the plasma membrane respectively. Epac2-NLS was used to monitor responses at the nucleus. KEY RESULTS: Activation of AC with forskolin or ß2 -adrenoceptors with isoprenaline increased cAMP in all subcellular locations. Activation of EP2 receptors with butaprost produced cAMP responses that were most readily detected by the non-raft and nuclear sensors, but only weakly detected by the cytosolic sensor and not detected at all by the lipid raft sensor. Exposure to rolipram, a PDE4 inhibitor, unmasked the ability of EP2 receptors to increase cAMP levels associated with lipid raft domains. Overexpression of AC2 selectively increased EP2 receptor-stimulated production of cAMP in non-raft membrane domains. CONCLUSIONS AND IMPLICATIONS: EP2 receptor activation of AC2 leads to cAMP production in non-raft and nuclear compartments of human ASMs, while ß2 adrenoceptor signalling is broadly detected across microdomains. The activity of PDE4 appears to play a role in maintaining the integrity of compartmentalized EP2 receptor responses in these cells.


Subject(s)
Cyclic AMP/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Biosensing Techniques , Bronchi/cytology , Cells, Cultured , Fluorescence Resonance Energy Transfer , Guanine Nucleotide Exchange Factors , Humans , Trachea/cytology
10.
Sci Rep ; 6: 19577, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26795432

ABSTRACT

Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.


Subject(s)
Cyclic AMP/metabolism , Intracellular Space/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Diffusion , Fluorescein/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Heart Ventricles/cytology , Humans , Male , Myocytes, Cardiac/metabolism , Peptides/pharmacology , Protein Subunits/metabolism , Rats, Sprague-Dawley , Spectrum Analysis
11.
PLoS One ; 9(9): e106905, 2014.
Article in English | MEDLINE | ID: mdl-25211146

ABSTRACT

The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system ('pleiotropic effects'). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to ß2-, but not ß1-, adrenoceptor stimulation. Under conditions of ß2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered ß-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae.


Subject(s)
Caveolin 3/biosynthesis , Heart Ventricles/drug effects , Muscle Cells/pathology , Receptors, Adrenergic, beta-2/biosynthesis , Simvastatin/administration & dosage , Adult , Animals , Cholesterol/biosynthesis , Gene Expression Regulation/drug effects , Heart Ventricles/pathology , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Male , Muscle Cells/drug effects , Nitric Oxide Synthase Type III/biosynthesis , Phosphorylation , Rats , Receptors, Adrenergic, beta-1/biosynthesis , Signal Transduction/drug effects
12.
PLoS One ; 9(4): e95835, 2014.
Article in English | MEDLINE | ID: mdl-24752595

ABSTRACT

Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.


Subject(s)
Cyclic AMP/metabolism , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Biosensing Techniques , Cell Line , Cholesterol/chemistry , Humans , Signal Transduction
13.
J Mol Cell Cardiol ; 52(2): 388-400, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21740911

ABSTRACT

Inotropy and lusitropy in the ventricular myocyte can be efficiently induced by activation of ß1-, but not ß2-, adrenoceptors (ARs). Compartmentation of ß2-AR-derived cAMP-dependent signalling underlies this functional discrepancy. Here we investigate the mechanism by which caveolae (specialised sarcolemmal invaginations rich in cholesterol and caveolin-3) contribute to compartmentation in the adult rat ventricular myocyte. Selective activation of ß2-ARs (with zinterol/CGP20712A) produced little contractile response in control cells but pronounced inotropic and lusitropic responses in cells treated with the cholesterol-depleting agent methyl-ß-cyclodextrin (MBCD). This was not linked to modulation of L-type Ca(2+) current, but instead to a discrete PKA-mediated phosphorylation of phospholamban at Ser(16). Application of a cell-permeable inhibitor of caveolin-3 scaffolding interactions mimicked the effect of MBCD on phosphorylated phospholamban (pPLB) during ß2-AR stimulation, consistent with MBCD acting via caveolae. Biosensor experiments revealed ß2-AR mobilisation of cAMP in PKA II signalling domains of intact cells only after MBCD treatment, providing a real-time demonstration of cAMP freed from caveolar constraint. Other proteins have roles in compartmentation, so the effects of phosphodiesterase (PDE), protein phosphatase (PP) and phosphoinositide-3-kinase (PI3K) inhibitors on pPLB and contraction were compared in control and MBCD treated cells. PP inhibition alone was conspicuous in showing robust de-compartmentation of ß2-AR-derived signalling in control cells and a comparatively diminutive effect after cholesterol depletion. Collating all evidence, we promote the novel concept that caveolae limit ß2-AR-cAMP signalling by providing a platform that not only attenuates production of cAMP but also prevents inhibitory modulation of PPs at the sarcoplasmic reticulum. This article is part of a Special Issue entitled "Local Signaling in Myocytes".


Subject(s)
Caveolae/metabolism , Cyclic AMP/biosynthesis , Myocytes, Cardiac/metabolism , Phosphoric Monoester Hydrolases/metabolism , Receptors, Adrenergic, beta-2/metabolism , Sarcoplasmic Reticulum/enzymology , Signal Transduction , Animals , Calcium/metabolism , Caveolae/drug effects , Cells, Cultured , Chromones/pharmacology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Morpholines/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Protein Transport , Rats , Rats, Wistar , Sarcoplasmic Reticulum/metabolism , beta-Cyclodextrins/pharmacology
14.
J Mol Cell Cardiol ; 50(3): 500-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21115018

ABSTRACT

ß(1)-Adrenergic receptors (ß(1)ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. ß(1)ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions. Furthermore, ß(1)AR activation enhanced the L-type Ca(2+) current, intracellular Ca(2+) transient, and myocyte shortening, while EPR activation had no effect, consistent with the idea that these functional responses are regulated by cAMP produced by receptors found in lipid raft domains. Using methyl-ß-cyclodextrin to disrupt lipid rafts by depleting membrane cholesterol did not eliminate compartmentalized behavior, but it did selectively alter specific receptor-mediated responses. Cholesterol depletion enhanced the sensitivity of functional responses produced by ß(1)ARs without having any effect on EPR activation. Changes in cAMP activity were also measured in intact cells using two different FRET-based biosensors: a type II PKA-based probe to monitor cAMP in subcellular compartments that include microdomains associated with caveolar lipid rafts and a freely diffusible Epac2-based probe to monitor total cytosolic cAMP. ß(1)AR and EPR activation elicited responses detected by both FRET probes. However, cholesterol depletion only affected ß(1)AR responses detected by the PKA probe. These results indicate that lipid rafts alone are not sufficient to explain the difference between ß(1)AR and EPR responses. They also suggest that ß(1)AR regulation of myocyte contraction involves the local production of cAMP by a subpopulation of receptors associated with caveolar lipid rafts.


Subject(s)
Calcium/metabolism , Cholesterol/deficiency , Cyclic AMP/metabolism , Myocytes, Cardiac/metabolism , Alprostadil/metabolism , Animals , Calcium Channels, L-Type/metabolism , Caveolae/metabolism , Caveolin 3/metabolism , Cell Compartmentation/physiology , Cholesterol/metabolism , Isoproterenol/metabolism , Male , Membrane Microdomains/metabolism , Myocardial Contraction/physiology , Myocytes, Cardiac/drug effects , Rats , Rats, Wistar , Receptors, Adrenergic, beta/metabolism , Signal Transduction , beta-Cyclodextrins/metabolism , beta-Cyclodextrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...