Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992700

ABSTRACT

To exploit the optoelectronic properties of silicon nanostructures (SiNS) in real devices, it is fundamental to study the ultrafast processes involving the photogenerated charges separation, migration and lifetime after the optical excitation. Ultrafast time-resolved optical measurements provide such information. In the present paper, we report on the relaxation dynamics of photogenerated charge-carriers in ultrafine SiNS synthesized by means of inductively-coupled-plasma process. The carriers' transient regime was characterized in high fluence regime by using a tunable pump photon energy and a broadband probe pulse with a photon energy ranging from 1.2 eV to 2.8 eV while varying the energy of the pump photons and their polarization. The SiNS consist of Si nanospheres and nanowires (NW) with a crystalline core embedded in a SiOx outer-shell. The NW inner core presents different typologies: long silicon nanowires (SiNW) characterized by a continuous core (with diameters between 2 nm and 15 nm and up to a few microns long), NW with disconnected fragments of SiNW (each fragment with a length down to a few nanometers), NW with a "chaplet-like" core and NW with core consisting of disconnected spherical Si nanocrystals. Most of these SiNS are asymmetric in shape. Our results reveal a photoabsorption (PA) channel for pump and probe parallel polarizations with a maximum around 2.6 eV, which can be associated to non-isotropic ultra-small SiNS and ascribed either to (i) electron absorption driven by the probe from some intermediate mid-gap states toward some empty state above the bottom of the conduction band or (ii) the Drude-like free-carrier presence induced by the direct-gap transition in the their band structure. Moreover, we pointed up the existence of a broadband and long-living photobleaching (PB) in the 1.2-2.0 eV energy range with a maximum intensity around 1.35 eV which could be associated to some oxygen related defect states present at the Si/SiOx interface. On the other hand, this wide spectral energy PB can be also due to both silicon oxide band-tail recombination and small Si nanostructure excitonic transition.

2.
Materials (Basel) ; 12(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618862

ABSTRACT

This work describes the development of a new method for ion implantation induced crystal damage recovery using multiple XeCl (308 nm) laser pulses with a duration of 30 ns. Experimental activity was carried on single phosphorus (P) as well as double phosphorus and aluminum (Al) implanted 4H-SiC epitaxial layers. Samples were then characterized through micro-Raman spectroscopy, Photoluminescence (PL) and Transmission Electron Microscopy (TEM) and results were compared with those coming from P implanted thermally annealed samples at 1650-1700-1750 °C for 1 h as well as P and Al implanted samples annealed at 1650 °C for 30 min. The activity outcome shows that laser annealing allows to achieve full crystal recovery in the energy density range between 0.50 and 0.60 J/cm2. Moreover, laser treated crystal shows an almost stress-free lattice with respect to thermally annealed samples that are characterized by high point and extended defects concentration. Laser annealing process, instead, allows to strongly reduce carbon vacancy (VC) concentration in the implanted area and to avoid intra-bandgap carrier recombination centres. Implanted area was almost preserved, except for some surface oxidation processes due to oxygen leakage inside the testing chamber. However, the results of this experimental activity gives way to laser annealing process viability for damage recovery and dopant activation inside the implanted area.

3.
Nanotechnology ; 28(28): 285702, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28585522

ABSTRACT

We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several µm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ∼5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of 'chaplet-like' structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ∼5 to ∼3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.

4.
Beilstein J Nanotechnol ; 8: 440-445, 2017.
Article in English | MEDLINE | ID: mdl-28326234

ABSTRACT

Scanning transmission electron microscopy (STEM) was successfully applied to the analysis of silicon nanowires (SiNWs) that were self-assembled during an inductively coupled plasma (ICP) process. The ICP-synthesized SiNWs were found to present a Si-SiO2 core-shell structure and length varying from ≈100 nm to 2-3 µm. The shorter SiNWs (maximum length ≈300 nm) were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX) spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor-liquid-solid (VLS) mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

SELECTION OF CITATIONS
SEARCH DETAIL
...