Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zoology (Jena) ; 119(6): 500-510, 2016 12.
Article in English | MEDLINE | ID: mdl-27449820

ABSTRACT

Fishes have several means of moving water to effect odorant transport to their olfactory epithelium ('olfactory flow'). Here we show that olfactory flow in the adult garpike Belone belone (Belonidae, Teleostei), a fish with an unusual nasal region, can be generated by its motion relative to water (swimming, or an external current, or both). We also show how the unusual features of the garpike's nasal region influence olfactory flow. These features comprise a triangular nasal cavity in which the olfactory epithelium is exposed to the external environment, a papilla situated within the nasal cavity, and an elongated ventral apex. To perform our investigation we first generated life-like plastic models of garpike heads from X-ray scans of preserved specimens. We then suspended these models in a flume and flowed water over them to simulate swimming. By directing filaments of dye at the static models, we were able to visualise flow in the nasal regions at physiologically relevant Reynolds numbers (700-2,000). We found that flow of water over the heads did cause circulation in the nasal cavity. Vortices may assist in this circulation. The pattern of olfactory flow was influenced by morphological variations and the asymmetry of the nasal region. The unusual features of the nasal region may improve odorant sampling in the garpike, by dispersing flow over the olfactory epithelium and by creating favourable conditions for odorant transport (e.g. steep velocity gradients). Unexpectedly, we found that the mouth and the base of the garpike's jaws may assist the sampling process. Thus, despite its apparent simplicity, the garpike's nasal region is likely to act as an effective trap for odorant molecules.


Subject(s)
Fishes/anatomy & histology , Fishes/physiology , Nose/anatomy & histology , Nose/physiology , Animals , Head , Models, Anatomic , Smell , Swimming , Water Movements
2.
Article in English | MEDLINE | ID: mdl-26780177

ABSTRACT

Scent detection in an aquatic environment is dependent on the movement of water. We set out to determine the mechanisms for moving water through the olfactory organ of guitarfishes (Rhinobatidae, Chondrichthyes) with open nasal cavities. We found at least two. In the first mechanism, which we identified by observing dye movement in the nasal region of a life-sized physical model of the head of Rhinobatos lentiginosus mounted in a flume, olfactory flow is generated by the guitarfish's motion relative to water, e.g. when it swims. We suggest that the pressure difference responsible for motion-driven olfactory flow is caused by the guitarfish's nasal flaps, which create a region of high pressure at the incurrent nostril, and a region of low pressure in and behind the nasal cavity. Vortical structures in the nasal region associated with motion-driven flow may encourage passage of water through the nasal cavity and its sensory channels, and may also reduce the cost of swimming. The arrangement of vortical structures is reminiscent of aircraft wing vortices. In the second mechanism, which we identified by observing dye movement in the nasal regions of living specimens of Glaucostegus typus, the guitarfish's respiratory pump draws flow through the olfactory organ in a rhythmic (0.5-2 Hz), but continuous, fashion. Consequently, the respiratory pump will maintain olfactory flow whether the guitarfish is swimming or at rest. Based on our results, we propose a model for olfactory flow in guitarfishes with open nasal cavities, and suggest other neoselachians which this model might apply to.


Subject(s)
Fishes/physiology , Nasal Cavity/physiology , Smell/physiology , Animals , Fishes/metabolism , Nasal Cavity/metabolism , Respiration , Swimming/physiology , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...