Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35159799

ABSTRACT

This article presents the results of experimental studies of the impact of electrode material and the effect of nanoscale film thickness on the resistive switching in forming-free nanocrystalline ZnO films grown by pulsed laser deposition. It was demonstrated that the nanocrystalline ZnO film with TiN, Pt, ZnO:In, and ZnO:Pd bottom electrodes exhibits a nonlinear bipolar effect of forming-free resistive switching. The sample with Pt showed the highest resistance values RHRS and RLRS and the highest value of Uset = 2.7 ± 0.4 V. The samples with the ZnO:In and ZnO:Pd bottom electrode showed the lowest Uset and Ures values. An increase in the number of laser pulses from 1000 to 5000 was shown to lead to an increase in the thickness of the nanocrystalline ZnO film from 7.2 ± 2.5 nm to 53.6 ± 18.3 nm. The dependence of electrophysical parameters (electron concentration, electron mobility, and resistivity) on the thickness of the forming-free nanocrystalline ZnO film for the TiN/ZnO/W structure was investigated. The endurance test and homogeneity test for TiN/ZnO/W structures were performed. The structure Al2O3/TiN/ZnO/W with a nanocrystalline ZnO thickness 41.2 ± 9.7 nm was shown to be preferable for the manufacture of ReRAM and memristive neuromorphic systems due to the highest value of RHRS/RLRS = 2307.8 ± 166.4 and low values of Uset = 1.9 ± 0.2 V and Ures = -1.3 ± 0.5 V. It was demonstrated that the use of the TiN top electrode in the Al2O3/TiN/ZnO memristor structure allowed for the reduction in Uset and Ures and the increase in the RHRS/RLRS ratio. The results obtained can be used in the manufacturing of resistive-switching nanoscale devices for neuromorphic computing based on the forming-free nanocrystalline ZnO oxide films.

2.
Nanomaterials (Basel) ; 11(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34835676

ABSTRACT

Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs. An original technique for evaluating the effective piezoelectric coefficient of CNTs is presented. For the first time, in this study, we investigate the influence of the growth temperature and thickness of the catalytic Ni layer on the value of the piezoelectric coefficient of CNTs. We establish the relationship between the effective piezoelectric coefficient of CNTs and their defectiveness and diameter, which determines the curvature of the graphene sheet surface. The calculated values of the effective piezoelectric coefficient of CNTs are shown to be between 0.019 and 0.413 C/m2, depending on the degree of their defectiveness and diameter.

3.
Materials (Basel) ; 14(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500943

ABSTRACT

One of the significant limitations of the pulsed laser deposition method in the mass-production-technologies of micro- and nanoelectronic and molecular device electronic fabrication is the issue of ensuring deposition of films with uniform thickness on substrates with large diameter (more than 100 mm) since the area of the laser spot (1-5 mm2) on the surface of the ablated target is incommensurably smaller than the substrate area. This paper reports the methodology that allows to calculate the distribution profile of the film thickness over the surface substrate with a large diameter, taking into account the construction and technological parameters of the pulsed laser deposition equipment. Experimental verification of the proposed methodology showed that the discrepancy with the experiment does not exceed 8%. The modeling of various technological parameters influence on the thickness uniformity has been carried out. Based on the modeling results, recommendations and parameters are proposed for manufacturing uniform thickness films. The results allow for increasing the film thickness uniformity with the thickness distribution < 5% accounts for ~ 31% of 300 mm diameter substrate.

4.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946198

ABSTRACT

Modern and future nanoelectronic and nanophotonic applications require precise control of the size, shape and density of III-V quantum dots in order to predefine the characteristics of devices based on them. In this paper, we propose a new approach to control the size of nanostructures formed by droplet epitaxy. We reveal that it is possible to reduce the droplet volume independently of the growth temperature and deposition amount by exposing droplets to ultra-low group-V flux. We carry out a thorough study of the effect of arsenic pressure on the droplet characteristics and demonstrate that indium droplets with a large initial size (>100 nm) and a low surface density (<108 cm-2) are able to shrink to dimensions appropriate for quantum dot applications. Small droplets are found to be unstable and difficult to control, while larger droplets are more resistive to arsenic flux and can be reduced to stable, small-sized nanostructures (~30 nm). We demonstrate the growth conditions under which droplets transform into dots, ring and holes and describe a mechanism of this transformation depending on the ultra-low arsenic flux. Thus, we observe phenomena which significantly expand the capabilities of droplet epitaxy.

5.
Materials (Basel) ; 13(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916820

ABSTRACT

This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm-3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.

6.
Nanotechnology ; 31(48): 485604, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-32931474

ABSTRACT

Semiconductor quantum dots (QDs) in the InAs/AlGaAs system are of great importance due to their promising optoelectronic and nanophotonic applications. However, control over emission wavelength governed by Al content in the matrix is still limited because of an influence of surface Al content on QD size and density. In this paper, we study the growth of In nanostructures by droplet epitaxy on various AlGaAs surfaces. We demonstrate that an increase in the Al content leads to a decrease in the droplet density and an increase in their size, which contradicts the Stranski-Krastanov QD growth. Using a hybrid analytical-Monte Carlo model, we explain this phenomenon by the fact that In adatoms acquire higher mobility on a first indium monolayer which is bound to surface Al atoms. This assumption is confirmed by the fact that a temperature decrease does not lead to a great increase in the critical thickness of droplet formation on the Al-containing surfaces whereas it changes considerably on the GaAs surface. Furthermore, the Al content influence on the formation of In droplets is much less significant than on the growth of InAs QDs by the Stranski-Krastanov mode. This gives an opportunity to use droplet epitaxy to control the matrix bandgap without considerable influence on the QD characteristics.

7.
Nanomaterials (Basel) ; 10(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674348

ABSTRACT

Energy conversion devices draw much attention due to their effective usage of energy and resulting decrease in CO2 emissions, which slows down the global warming processes. Fabrication of energy conversion devices based on ferroelectric and piezoelectric lead-free films is complicated due to the difficulties associated with insufficient elaboration of growth methods. Most ferroelectric and piezoelectric materials (LiNbO3, BaTiO3, etc.) are multi-component oxides, which significantly complicates their integration with micro- and nanoelectronic technology. This paper reports the effect of the oxygen pressure on the properties of nanocrystalline lithium niobate (LiNbO3) films grown by pulsed laser deposition on SiO2/Si structures. We theoretically investigated the mechanisms of LiNbO3 dissociation at various oxygen pressures. The results of x-ray photoelectron spectroscopy study have shown that conditions for the formation of LiNbO3 films are created only at an oxygen pressure of 1 × 10-2 Torr. At low residual pressure (1 × 10-5 Torr), a lack of oxygen in the formed films leads to the formation of niobium oxide (Nb2O5) clusters. The presented theoretical and experimental results provide an enhanced understanding of the nanocrystalline LiNbO3 films growth with target parameters using pulsed laser deposition for the implementation of piezoelectric and photoelectric energy converters.

8.
Nanomaterials (Basel) ; 10(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466144

ABSTRACT

We experimentally investigated the effect of post-growth annealing on the morphological, structural, and electrophysical parameters of nanocrystalline ZnO films fabricated by pulsed laser deposition. The influence of post-growth annealing modes on the electroforming voltage and the resistive switching effect in ZnO nanocrystalline films is investigated. We demonstrated that nanocrystalline zinc oxide films, fabricated at certain regimes, show the electroforming-free resistive switching. It was shown, that the forming-free nanocrystalline ZnO film demonstrated a resistive switching effect and switched at a voltage 1.9 ± 0.2 V from 62.42 ± 6.47 (RHRS) to 0.83 ± 0.06 kΩ (RLRS). The influence of ZnO surface morphology on the resistive switching effect is experimentally investigated. It was shown, that the ZnO nanocrystalline film exhibits a stable resistive switching effect, which is weakly dependent on its nanoscale structure. The influence of technological parameters on the resistive switching effect in a forming-free ZnO nanocrystalline film is investigated. The results can be used for fabrication of new-generation micro- and nanoelectronics elements, including random resistive memory (ReRAM) elements for neuromorphic structures based on forming-free ZnO nanocrystalline films.

9.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204498

ABSTRACT

The paper presents a theoretical model of the catalytic centers formation processes during annealing of multilayer nanosized metal films for carbon nanotubes growth. The approach to the description of the model is based on the mass transfer processes under the influence of mechanical thermoelastic stresses, which arise due to the difference in the thermal expansion coefficients of the substrate materials and nanosized metal layers. The thermal stress gradient resulting from annealing creates a drop in the chemical potential over the thickness of the film structure. This leads to the initiation of diffusion mass transfer between the inner and outer surfaces of the films. As a result, the outer surface begins to corrugate and fragment, creating separate islands, which serve as the basis for the catalytic centers formation. Experimental research on the formation of catalytic centers in the structure of Ni/Cr/Si was carried out. It is demonstrated that the proposed model allows to predict the geometric dimensions of the catalytic centers before growing carbon nanotubes. The results can be used to create micro- and nanoelectronics devices based on carbon nanotube arrays.

10.
Molecules ; 26(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383898

ABSTRACT

We have experimentally studied the influence of pulsed laser deposition parameters on the morphological and electrophysical parameters of vanadium oxide films. It is shown that an increase in the number of laser pulses from 10,000 to 60,000 and an oxygen pressure from 3 × 10-4 Torr to 3 × 10-2 Torr makes it possible to form vanadium oxide films with a thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm, a surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm, electron concentration from (0.32 ± 0.07) × 1017 cm-3 to (42.64 ± 4.46) × 1017 cm-3, electron mobility from 0.25 ± 0.03 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s), and resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm. The regimes at which vanadium oxide films with a thickness of 22.3 ± 4.4 nm, a roughness of 7.8 ± 1.1 nm, and a resistivity of 6.32 ± 2.21 Ω·cm are obtained for their potential use in the fabrication of ReRAM neuromorphic systems. It is shown that a 22.3 ± 4.4 nm thick vanadium oxide film has the bipolar effect of resistive switching. The resistance in the high state was (89.42 ± 32.37) × 106 Ω, the resistance in the low state was equal to (6.34 ± 2.34) × 103 Ω, and the ratio RHRS/RLRS was about 14,104. The results can be used in the manufacture of a new generation of micro- and nanoelectronics elements to create ReRAM of neuromorphic systems based on vanadium oxide thin films.


Subject(s)
Biomimetic Materials/chemistry , Oxides/chemistry , Vanadium Compounds/chemistry , Electric Impedance , Lasers , Nanostructures/chemistry , Neurons/chemistry , Surface Properties , Vanadium/chemistry
11.
Nanotechnology ; 30(50): 505601, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31480037

ABSTRACT

Fabrication of AIIIBV nanostructures by droplet epitaxy has many advantages over other epitaxial techniques. Although various characteristics of the growth by droplet epitaxy have been thoroughly studied for both lattice-matched and mismatched systems, little is known about physical processes hindering the formation of small size InAs/GaAs nanostructure arrays with low density and thin wetting layer. In this paper, we experimentally demonstrate that the indium droplet diameter can be reduced by decreasing the deposition time, but this reduction is limited by a critical thickness of droplet formation dependent on the substrate temperature. Using the kinetic Monte Carlo model, we propose a mechanism considering that the droplet formation begins when the system overcomes a barrier determined by the substrate attraction. As a result of physical and chemical balancing between adatom aggregation and substrate wetting, this attraction becomes weaker with increasing either temperature or deposition amount, which leads to the critical layer formation and subsequent nucleation. Using this mechanism, it is possible to provide a wide control over the nanostructure growth which is especially important at high temperatures when the processes of the island ripening are particularly intensive.

12.
Materials (Basel) ; 11(4)2018 Apr 21.
Article in English | MEDLINE | ID: mdl-29690497

ABSTRACT

Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain. Using atomic force microscopy, we demonstrated the piezoelectric response of multi-walled CNTs under compression and bending. The current generated by deforming an individual CNT was shown to be −24 nA. The value of the surface potential at the top of the bundle of strained CNTs varied from 268 mV to −110 mV, depending on strain type and magnitude. We showed that the maximum values of the current and the surface potential can be achieved when longitudinal strain predominates in a CNT. However, increasing the bending strain of CNTs does not lead to a significant increase in current and surface potential, due to the mutual compensation of piezoelectric charges concentrated on the CNT side walls. The results of the study offer a number of opportunities and challenges for further fundamental research on the piezoelectric properties of carbon nanotubes as well as for the development of advanced CNT-based nanopiezotronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...