Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(11): eadm8600, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478615

ABSTRACT

Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.


Subject(s)
Pancreatic Neoplasms , Pyruvic Acid , Humans , Pyruvic Acid/metabolism , Deuterium , Magnetic Resonance Spectroscopy/methods , Glucose/metabolism , Magnetic Resonance Imaging , Pancreatic Neoplasms/diagnostic imaging , Lactic Acid , Molecular Imaging
2.
Sci Rep ; 13(1): 19998, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968574

ABSTRACT

Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.


Subject(s)
Pancreatic Neoplasms , Pancreatitis , Mice , Humans , Animals , Deuterium , Pancreatitis/diagnostic imaging , Acute Disease , Disease Models, Animal , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Lactic Acid/metabolism , Pyruvic Acid/metabolism
3.
NMR Biomed ; 36(11): e4995, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37401393

ABSTRACT

Deuterium metabolic imaging (DMI) is a promising molecular MRI approach, which follows the administration of deuterated substrates and their metabolization. [6,6'-2 H2 ]-glucose for instance is preferentially converted in tumors to [3,3'-2 H2 ]-lactate as a result of the Warburg effect, providing a distinct resonance whose mapping using time-resolved spectroscopic imaging can diagnose cancer. The MR detection of low-concentration metabolites such as lactate, however, is challenging. It has been recently shown that multi-echo balanced steady-state free precession (ME-bSSFP) increases the signal-to-noise ratio (SNR) of these experiments approximately threefold over regular chemical shift imaging; the present study examines how DMI's sensitivity can be increased further by advanced processing methods. Some of these, such as compressed sensing multiplicative denoising and block-matching/3D filtering, can be applied to any spectroscopic/imaging methods. Sensitivity-enhancing approaches were also specifically tailored to ME-bSSFP DMI, by relying on priors related to the resonances' positions and to features of the metabolic kinetics. Two new methods are thus proposed that use these constraints for enhancing the sensitivity of both the spectral images and the metabolic kinetics. The ability of these methods to improve DMI is evidenced in pancreatic cancer studies carried at 15.2 T, where suitable implementations of the proposals imparted eightfold or more SNR improvement over the original ME-bSSFP data, at no informational cost. Comparisons with other propositions in the literature are briefly discussed.

4.
Cell Rep ; 36(5): 109480, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348160

ABSTRACT

Recent multi-omics studies show different immune tumor microenvironment (TME) compositions in glioblastoma (GBM). However, temporal comprehensive knowledge of the TME from initiation of the disease remains sparse. We use Cre recombinase (Cre)-inducible lentiviral murine GBM models to compare the cellular evolution of the immune TME in tumors initiated from different oncogenic drivers. We show that neutrophils infiltrate early during tumor progression primarily in the mesenchymal GBM model. Depleting neutrophils in vivo at the onset of disease accelerates tumor growth and reduces the median overall survival time of mice. We show that, as a tumor progresses, bone marrow-derived neutrophils are skewed toward a phenotype associated with pro-tumorigenic processes. Our findings suggest that GBM can remotely regulate systemic myeloid differentiation in the bone marrow to generate neutrophils pre-committed to a tumor-supportive phenotype. This work reveals plasticity in the systemic immune host microenvironment, suggesting an additional point of intervention in GBM treatment.


Subject(s)
Bone Marrow/pathology , Brain Neoplasms/pathology , Carcinogenesis/pathology , Glioma/pathology , Neutrophils/pathology , Tumor Microenvironment , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cytotoxicity, Immunologic , Disease Models, Animal , Disease Progression , Female , Glioma/blood supply , Glioma/drug therapy , Humans , Immunosuppression Therapy , Integrases/metabolism , Mice, Inbred C57BL , Mutation/genetics , Neoplasm Staging , Neovascularization, Pathologic/pathology , Survival Analysis
5.
Magn Reson Med ; 86(5): 2604-2617, 2021 11.
Article in English | MEDLINE | ID: mdl-34196041

ABSTRACT

PURPOSE: Deuterium metabolic imaging (DMI) maps the uptake of deuterated precursors and their conversion into lactate and other markers of tumor metabolism. Even after leveraging 2 H's short T1 s, DMI's signal-to-noise ratio (SNR) is limited. We hypothesize that a multi-echo balanced steady-state free precession (ME-bSSFP) approach would increase SNR compared to chemical shift imaging (CSI), while achieving spectral isolation of the metabolic precursors and products. METHODS: Suitably tuned 2 H ME-bSSFP (five echo times [TEs], ΔTE = 2.2 ms, repetition time [TR]/flip-angle = 12 ms/60°) was implemented at 15.2T and compared to CSI (TR/flip-angle = 95 ms/90°) regarding SNR and spectral isolation, in simulations, in deuterated phantoms and for the in vivo diagnosis of a mouse tumor model of pancreatic adenocarcinoma (N = 10). RESULTS: Simulations predicted an SNR increase vs. CSI of 3-5, and that the peaks of 2 H-water, 2 H6,6' -glucose, and 2 H3,3' -lactate can be well isolated by ME-bSSFP; phantoms confirmed this. In vivo, at equal spatial resolution (1.25 × 1.25 mm2 ) and scan time (10 min), 2 H6,6' -glucose's and 2 H3,3' -lactate's SNR were indeed higher for bSSFP than for CSI, three-fold for glucose (57 ± 30 vs. 19 ± 11, P < .001), doubled for water (13 ± 5 vs. 7 ± 3, P = .005). The time courses and overall localization of all metabolites agreed well, comparing CSI against ME-bSSFP. However, a clearer localization of glucose in kidneys and bladder, the detection of glucose-avid rims in certain tumors, and a heterogeneous pattern of intra-tumor lactate production could only be observed using ME-bSSFP's higher resolution. CONCLUSIONS: ME-bSSFP provides greater SNR per unit time than CSI, providing for higher spatial resolution mapping of glucose uptake and lactate production in tumors.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Deuterium , Magnetic Resonance Imaging , Mice , Pancreatic Neoplasms/diagnostic imaging , Phantoms, Imaging , Signal-To-Noise Ratio
6.
NMR Biomed ; 34(9): e4569, 2021 09.
Article in English | MEDLINE | ID: mdl-34137085

ABSTRACT

Detecting and mapping metabolism in tissues represents a major step in detecting, characterizing, treating and understanding cancers. Recently introduced deuterium metabolic imaging techniques could offer a noninvasive route for the metabolic imaging of animals and humans, based on using 2 H magnetic resonance spectroscopic imaging (MRSI) to detect the uptake of deuterated glucose and the fate of its metabolic products. In this study, 2 H6,6' -glucose was administered to mice cohorts that had been orthotopically implanted with two different models of pancreatic ductal adenocarcinoma (PDAC), involving PAN-02 and KPC cell lines. As the tumors grew, 2 H6,6' -glucose was administered as bolii into the animals' tail veins, and 2 H MRSI images were recorded at 15.2 T. 2D phase-encoded chemical shift imaging experiments could detect a signal from this deuterated glucose immediately after the bolus injection for both the PDAC models, reaching a maximum in the animals' tumors ~ 20 min following administration, and nearly total decay after ~ 40 min. The main metabolic reporter of the cancers was the 2 H3,3' -lactate signal, which MRSI could detect and localize on the tumors when these were 5 mm or more in diameter. Lactate production time traces varied slightly with the animal and tumor model, but in general lactate peaked at times of 60 min or longer following injection, reaching concentrations that were ~ 10-fold lower than those of the initial glucose injection. This 2 H3,3' -lactate signal was only visible inside the tumors. 2 H-water could also be detected as deuterated glucose's metabolic product, increasing throughout the entire time course of the experiment from its ≈10 mM natural abundance background. This water resonance could be imaged throughout the entire abdomen of the animals, including an enhanced presence in the tumor, but also in other organs like the kidney and bladder. These results suggest that deuterium MRSI may serve as a robust, minimally invasive tool for the monitoring of metabolic activity in pancreatic tumors, capable of undergoing clinical translation and supporting decisions concerning treatment strategies. Comparisons with in vivo metabolic MRI experiments that have been carried out in other animal models are presented and their differences/similarities are discussed.


Subject(s)
Deuterium/chemistry , Glucose/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Glucose/administration & dosage , Injections, Intravenous , Lactic Acid/metabolism , Metabolome , Mice , Water
7.
Br J Cancer ; 125(4): 534-546, 2021 08.
Article in English | MEDLINE | ID: mdl-34155340

ABSTRACT

BACKGROUND: There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS: We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS: FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION: Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.


Subject(s)
Neovascularization, Pathologic/therapy , Photochemotherapy/methods , Prostatic Neoplasms/therapy , Animals , Cell Line, Tumor , Combined Modality Therapy , Dose Fractionation, Radiation , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Prostatic Neoplasms/blood supply , Survival Analysis , Tumor Microenvironment , Xenograft Model Antitumor Assays
8.
NMR Biomed ; 34(2): e4446, 2021 02.
Article in English | MEDLINE | ID: mdl-33219722

ABSTRACT

This study explored the usefulness of multiple quantitative MRI approaches to detect pancreatic ductal adenocarcinomas in two murine models, PAN-02 and KPC. Methods assayed included 1 H T1 and T2 measurements, quantitative diffusivity mapping, magnetization transfer (MT) 1 H MRI throughout the abdomen and hyperpolarized 13 C spectroscopic imaging. The progress of the disease was followed as a function of its development; studies were also conducted for wildtype control mice and for mice with induced mild acute pancreatitis. Customized methods developed for scanning the motion- and artifact-prone mice abdomens allowed us to obtain quality 1 H images for these targeted regions. Contrasts between tumors and surrounding tissues, however, were significantly different. Anatomical images, T2 maps and MT did not yield significant contrast unless tumors were large. By contrast, tumors showed statistically lower diffusivities than their surroundings (≈8.3 ± 0.4 x 10-4 for PAN-02 and ≈10.2 ± 0.6 x 10-4 for KPC vs 13 ± 1 x 10-3 mm2 s-1 for surroundings), longer T1 relaxation times (≈1.44 ± 0.05 for PAN-02 and ≈1.45 ± 0.05 for KPC vs 0.95 ± 0.10 seconds for surroundings) and significantly higher lactate/pyruvate ratios by hyperpolarized 13 C MR (0.53 ± 0.2 for PAN-02 and 0.78 ± 0.2 for KPC vs 0.11 ± 0.04 for control and 0.31 ± 0.04 for pancreatitis-bearing mice). Although the latter could also distinguish early-stage tumors from healthy animal controls, their response was similar to that in our pancreatitis model. Still, this ambiguity could be lifted using the 1 H-based reporters. If confirmed for other kinds of pancreatic tumors this means that these approaches, combined, can provide a route to an early detection of pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Pancreatic Neoplasms/diagnostic imaging , Acute Disease , Animals , Artifacts , Carbon Isotopes , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor/transplantation , Diffusion , Genes, Reporter , Luminescent Proteins , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motion , Neoplasm Staging , Pancreatic Neoplasms/pathology , Pancreatitis/diagnostic imaging , Proton Magnetic Resonance Spectroscopy/methods , Red Fluorescent Protein
9.
Nat Biomed Eng ; 4(3): 286-297, 2020 03.
Article in English | MEDLINE | ID: mdl-32165736

ABSTRACT

The monitoring of vascular-targeted therapies using magnetic resonance imaging, computed tomography or ultrasound is limited by their insufficient spatial resolution. Here, by taking advantage of the intrinsic optical properties of haemoglobin, we show that raster-scanning optoacoustic mesoscopy (RSOM) provides high-resolution images of the tumour vasculature and of the surrounding tissue, and that the detection of a wide range of ultrasound bandwidths enables the distinction of vessels of differing size, providing detailed insights into the vascular responses to vascular-targeted therapy. Using RSOM to examine the responses to vascular-targeted photodynamic therapy in mice with subcutaneous xenografts, we observed a substantial and immediate occlusion of the tumour vessels followed by haemorrhage within the tissue and the eventual collapse of the entire vasculature. Using dual-wavelength RSOM, which distinguishes oxyhaemoglobin from deoxyhaemoglobin, we observed an increase in oxygenation of the entire tumour volume immediately after the application of the therapy, and a second wave of oxygen reperfusion approximately 24 h thereafter. We also show that RSOM enables the quantification of differences in neoangiogenesis that predict treatment efficacy.


Subject(s)
Diagnostic Imaging/methods , Neovascularization, Pathologic/diagnosis , Photoacoustic Techniques/methods , Ultrasonography/methods , Vascular Neoplasms/diagnostic imaging , Animals , Brain/diagnostic imaging , Cerebral Ventricle Neoplasms/diagnostic imaging , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Craniotomy , Disease Models, Animal , Endothelin-1 , Epinephrine , Female , Heterografts , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Lasers , Mice , Mice, Inbred BALB C , Oxygen , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Vascular Neoplasms/pathology , Vasoconstriction
10.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100185

ABSTRACT

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Subject(s)
Genomics , Metabolomics , Neoplasms/pathology , Urea/metabolism , Amino Acid Transport Systems, Basic/metabolism , Animals , Aspartate Carbamoyltransferase/genetics , Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Line, Tumor , Dihydroorotase/genetics , Dihydroorotase/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Mitochondrial Membrane Transport Proteins , Neoplasms/metabolism , Ornithine Carbamoyltransferase/antagonists & inhibitors , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phosphorylation/drug effects , Pyrimidines/biosynthesis , Pyrimidines/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
11.
Sci Adv ; 2(5): e1600349, 2016 05.
Article in English | MEDLINE | ID: mdl-27386551

ABSTRACT

The availability of therapeutics to treat pregnancy complications is severely lacking mainly because of the risk of causing harm to the fetus. As enhancement of placental growth and function can alleviate maternal symptoms and improve fetal growth in animal models, we have developed a method for targeted delivery of payloads to the placenta. We show that the tumor-homing peptide sequences CGKRK and iRGD bind selectively to the placental surface of humans and mice and do not interfere with normal development. Peptide-coated nanoparticles intravenously injected into pregnant mice accumulated within the mouse placenta, whereas control nanoparticles exhibited reduced binding and/or fetal transfer. We used targeted liposomes to efficiently deliver cargoes of carboxyfluorescein and insulin-like growth factor 2 to the mouse placenta; the latter significantly increased mean placental weight when administered to healthy animals and significantly improved fetal weight distribution in a well-characterized model of fetal growth restriction. These data provide proof of principle for targeted delivery of drugs to the placenta and provide a novel platform for the development of placenta-specific therapeutics.


Subject(s)
Drug Carriers , Drug Delivery Systems , Peptide Fragments/metabolism , Placenta/metabolism , Amino Acid Sequence , Animals , Calreticulin/genetics , Cell-Derived Microparticles , Female , Humans , Insulin-Like Growth Factor II/chemistry , Liposomes , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , Placenta/drug effects , Pregnancy , Protein Binding , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics
12.
Breast Cancer (Auckl) ; 9(Suppl 2): 79-87, 2015.
Article in English | MEDLINE | ID: mdl-27385913

ABSTRACT

Tumor-homing peptides with tissue-penetrating properties increase the efficacy of targeted cancer therapy by delivering an anticancer agent to the tumor interior. LyP-1 (CGNKRTRGC) and iRGD (CRGDKGPDC) are founding members of this class of peptides. The presence of the cysteines forming the cyclizing disulfide bond complicates conjugation of these peptides with other molecules, such as drugs. Here, we report the synthesis of conjugatable disulfide-bridged peptides and their conjugation to biologically important molecules. We have synthesized the LyP-1, iRGD, and CRGDC (GACRGDCLGA) peptides with a cysteine or maleimidohexanoic acid added externally at N-terminus of the sequences. Subsequent conjugation to payloads yielded stable compounds in which the tumor-homing properties of the peptide and the biological activity of the payload were retained.

13.
Mol Ther ; 21(12): 2195-204, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23959073

ABSTRACT

Antiangiogenic therapy is a promising new treatment modality for cancer, but it generally produces only transient tumor regression. We have previously devised a tumor-targeted nanosystem, in which a pentapeptide, CGKRK, delivers a proapoptotic peptide into the mitochondria of tumor blood vessel endothelial cells and tumor cells. The treatment was highly effective in glioblastoma mouse models completely refractory to other antiangiogenic treatments. Here, we identify p32/gC1qR/HABP, a mitochondrial protein that is also expressed at the cell surface of activated (angiogenic) endothelial cells and tumor cells, as a receptor for the CGKRK peptide. The results demonstrate the ability of p32 to cause internalization of a payload bound to p32 into the cytoplasm. We also show that nardilysin, a protease capable of cleaving CGKRK, plays a role in the internalization of a p32-bound payload. As p32 is overexpressed and surface displayed in breast cancers, we studied the efficacy of the nanosystem in this cancer. We show highly significant treatment results in an orthotopic model of breast cancer. The specificity of cell surface p32 for tumor-associated cells, its ability to carry payloads to mitochondria, and the efficacy of the system in important types of cancer make the nanosystem a promising candidate for further development.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Breast Neoplasms/therapy , Membrane Glycoproteins/metabolism , Mitochondrial Proteins/metabolism , Nanoparticles/chemistry , Peptides/pharmacology , Receptors, Complement/metabolism , Angiogenesis Inhibitors/therapeutic use , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Delivery Systems , Female , Human Umbilical Vein Endothelial Cells , Humans , Mammary Neoplasms, Experimental , Membrane Glycoproteins/genetics , Metalloendopeptidases/metabolism , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/genetics , Molecular Targeted Therapy , Organ Specificity , Peptides/administration & dosage , Peptides/therapeutic use , Receptors, Complement/genetics
14.
Cancer Res ; 73(2): 804-12, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23151901

ABSTRACT

Poor penetration of antitumor drugs into the extravascular tumor tissue is often a major factor limiting the efficacy of cancer treatments. Our group has recently described a strategy to enhance tumor penetration of chemotherapeutic drugs through use of iRGD peptide (CRGDK/RGPDC). This peptide comprises two sequence motifs: RGD, which binds to αvß3/5 integrins on tumor endothelia and tumor cells, and a cryptic CendR motif (R/KXXR/K-OH). Once integrin binding has brought iRGD to the tumor, the peptide is proteolytically cleaved to expose the cryptic CendR motif. The truncated peptide loses affinity for its primary receptor and binds to neuropilin-1, activating a tissue penetration pathway that delivers the peptide along with attached or co-administered payload into the tumor mass. Here, we describe the design of a new tumor-penetrating peptide based on the current knowledge of homing sequences and internalizing receptors. The tumor-homing motif in the new peptide is the NGR sequence, which binds to endothelial CD13. The NGR sequence was placed in the context of a CendR motif (RNGR), and this sequence was embedded in the iRGD framework. The resulting peptide (CRNGRGPDC, iNGR) homed to tumor vessels and penetrated into tumor tissue more effectively than the standard NGR peptide. iNGR induced greater tumor penetration of coupled nanoparticles and co-administered compounds than NGR. Doxorubicin given together with iNGR was significantly more efficacious than the drug alone. These results show that a tumor-specific, tissue-penetrating peptide can be constructed from known sequence elements. This principle may be useful in designing tissue-penetrating peptides for other diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Neoplasms/drug therapy , Oligopeptides/therapeutic use , Amino Acid Sequence , Animals , Cell Line, Tumor , Drug Design , Humans , Mice , Protein Binding
15.
J Comput Aided Mol Des ; 27(1): 31-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23239171

ABSTRACT

We present a chemical strategy to engineer analogs of the tumor-homing peptide CREKA (Cys-Arg-Glu-Lys-Ala), which binds to fibrin and fibrin-associated clotted plasma proteins in tumor vessels (Simberg et al. in Proc Natl Acad Sci USA 104:932-936, 2007) with improved ability to inhibit tumor growth. Computer modeling using a combination of simulated annealing and molecular dynamics were carried out to design targeted replacements aimed at enhancing the stability of the bioactive conformation of CREKA. Because this conformation presents a pocket-like shape with the charged groups of Arg, Glu and Lys pointing outward, non-proteinogenic amino acids α-methyl and N-methyl derivatives of Arg, Glu and Lys were selected, rationally designed and incorporated into CREKA analogs. The stabilization of the bioactive conformation predicted by the modeling for the different CREKA analogs matched the tumor fluorescence results, with tumor accumulation increasing with stabilization. Here we report the modeling, synthetic procedures, and new biological assays used to test the efficacy and utility of the analogs. Combined, our results show how studies based on multi-disciplinary collaboration can converge and lead to useful biomedical advances.


Subject(s)
Antineoplastic Agents/chemistry , Drug Design , Oligopeptides/chemistry , Amino Acids/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Mice , Molecular Dynamics Simulation , Nanostructures/chemistry , Oligopeptides/metabolism , Oligopeptides/pharmacology , Peptides/chemistry , Protein Conformation
16.
Proc Natl Acad Sci U S A ; 108(42): 17450-5, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21969599

ABSTRACT

Antiangiogenic therapy can produce transient tumor regression in glioblastoma (GBM), but no prolongation in patient survival has been achieved. We have constructed a nanosystem targeted to tumor vasculature that incorporates three elements: (i) a tumor-homing peptide that specifically delivers its payload to the mitochondria of tumor endothelial cells and tumor cells, (ii) conjugation of this homing peptide with a proapoptotic peptide that acts on mitochondria, and (iii) multivalent presentation on iron oxide nanoparticles, which enhances the proapoptotic activity. The iron oxide component of the nanoparticles enabled imaging of GBM tumors in mice. Systemic treatment of GBM-bearing mice with the nanoparticles eradicated most tumors in one GBM mouse model and significantly delayed tumor development in another. Coinjecting the nanoparticles with a tumor-penetrating peptide further enhanced the therapeutic effect. Both models used have proven completely resistant to other therapies, suggesting clinical potential of our nanosystem.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Oligopeptides/administration & dosage , Amino Acid Sequence , Angiogenesis Inhibitors/chemistry , Animals , Apoptosis/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Magnetite Nanoparticles/administration & dosage , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Mitochondria/drug effects , Mitochondria/metabolism , Oligopeptides/chemistry
17.
Proc Natl Acad Sci U S A ; 108(17): 7154-9, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21482787

ABSTRACT

The ability to selectively deliver compounds into atherosclerotic plaques would greatly benefit the detection and treatment of atherosclerotic disease. We describe such a delivery system based on a 9-amino acid cyclic peptide, LyP-1. LyP-1 was originally identified as a tumor-homing peptide that specifically recognizes tumor cells, tumor lymphatics, and tumor-associated macrophages. As the receptor for LyP-1, p32, is expressed in atherosclerotic plaques, we tested the ability of LyP-1 to home to plaques. Fluorescein-labeled LyP-1 was intravenously injected into apolipoprotein E (ApoE)-null mice that had been maintained on a high-fat diet to induce atherosclerosis. LyP-1 accumulated in the plaque interior, predominantly in macrophages. More than 60% of cells released from plaques were positive for LyP-1 fluorescence. Another plaque-homing peptide, CREKA, which binds to fibrin-fibronectin clots and accumulates at the surface of plaques, yielded fewer positive cells. Tissues that did not contain plaque yielded only traces of LyP-1(+) cells. LyP-1 was capable of delivering intravenously injected nanoparticles to plaques; we observed abundant accumulation of LyP-1-coated superparamagnetic iron oxide nanoparticles in the plaque interior, whereas CREKA-nanoworms remained at the surface of the plaques. Intravenous injection of 4-[(18)F]fluorobenzoic acid ([(18)F]FBA)-conjugated LyP-1 showed a four- to sixfold increase in peak PET activity in aortas containing plaques (0.31% ID/g) compared with aortas from normal mice injected with [(18)F]FBA-LyP-1(0.08% ID/g, P < 0.01) or aortas from atherosclerotic ApoE mice injected with [(18)F]FBA-labeled control peptide (0.05% ID/g, P < 0.001). These results indicate that LyP-1 is a promising agent for the targeting of atherosclerotic lesions.


Subject(s)
Apolipoproteins E , Atherosclerosis/metabolism , Ferric Compounds/pharmacokinetics , Nanoparticles , Peptides, Cyclic/pharmacokinetics , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/pathology , Drug Delivery Systems/methods , Female , Ferric Compounds/pharmacology , Mice , Mice, Mutant Strains , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Peptides, Cyclic/pharmacology
18.
Blood ; 116(15): 2847-56, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20587786

ABSTRACT

The tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) specifically homes to tumors by binding to fibrin and fibrin-associated clotted plasma proteins in tumor vessels. Previous results show that CREKA-coated superparamagnetic iron oxide particles can cause additional clotting in tumor vessels, which creates more binding sites for the peptide. We have used this self-amplifying homing system to develop theranostic nanoparticles that simultaneously serve as an imaging agent and inhibit tumor growth by obstructing tumor circulation through blood clotting. The CREKA nanoparticles were combined with nanoparticles coated with another tumor-homing peptide, CRKDKC, and nanoparticles with an elongated shape (nanoworms) were used for improved binding efficacy. The efficacy of the CREKA peptide was then increased by replacing some residues with nonproteinogenic counterparts, which increased the stability of the peptide in the circulation. Treatment of mice bearing orthotopic human prostate cancer tumors with the targeted nanoworms caused extensive clotting in tumor vessels, whereas no clotting was observed in the vessels of normal tissues. Optical and magnetic resonance imaging confirmed tumor-specific targeting of the nanoworms, and ultrasound imaging showed reduced blood flow in tumor vessels. Treatment of mice with prostate cancer with multiple doses of the nanoworms induced tumor necrosis and a highly significant reduction in tumor growth.


Subject(s)
Metal Nanoparticles/therapeutic use , Oligopeptides/administration & dosage , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/therapy , Animals , Cell Line, Tumor , Drug Delivery Systems , Ferric Compounds/chemistry , Humans , Magnetic Resonance Imaging , Male , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
19.
Science ; 328(5981): 1031-5, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20378772

ABSTRACT

Poor penetration of anticancer drugs into tumors can be an important factor limiting their efficacy. We studied mouse tumor models to show that a previously characterized tumor-penetrating peptide, iRGD, increased vascular and tissue permeability in a tumor-specific and neuropilin-1-dependent manner, allowing coadministered drugs to penetrate into extravascular tumor tissue. Importantly, this effect did not require the drugs to be chemically conjugated to the peptide. Systemic injection with iRGD improved the therapeutic index of drugs of various compositions, including a small molecule (doxorubicin), nanoparticles (nab-paclitaxel and doxorubicin liposomes), and a monoclonal antibody (trastuzumab). Thus, coadministration of iRGD may be a valuable way to enhance the efficacy of anticancer drugs while reducing their side effects, a primary goal of cancer therapy research.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Neoplasms/drug therapy , Oligopeptides/administration & dosage , Albumin-Bound Paclitaxel , Albumins/administration & dosage , Albumins/pharmacokinetics , Albumins/therapeutic use , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Capillary Permeability/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Humans , Liposomes , Mice , Neoplasms/blood supply , Neoplasms/metabolism , Neuropilin-1/metabolism , Oligopeptides/metabolism , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Paclitaxel/therapeutic use , Permeability , Trastuzumab , Xenograft Model Antitumor Assays
20.
Cancer Cell ; 16(6): 510-20, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19962669

ABSTRACT

Poor penetration of drugs into tumors is a major obstacle in tumor treatment. We describe a strategy for peptide-mediated delivery of compounds deep into the tumor parenchyma that uses a tumor-homing peptide, iRGD (CRGDK/RGPD/EC). Intravenously injected compounds coupled to iRGD bound to tumor vessels and spread into the extravascular tumor parenchyma, whereas conventional RGD peptides only delivered the cargo to the blood vessels. iRGD homes to tumors through a three-step process: the RGD motif mediates binding to alphav integrins on tumor endothelium and a proteolytic cleavage then exposes a binding motif for neuropilin-1, which mediates penetration into tissue and cells. Conjugation to iRGD significantly improved the sensitivity of tumor-imaging agents and enhanced the activity of an antitumor drug.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Nanoparticles , Neoplasms, Experimental/metabolism , Neoplasms/metabolism , Amino Acid Sequence , Animals , Integrins/metabolism , Mice , Mice, Nude , Neoplasms/pathology , Neoplasms, Experimental/pathology , Neuropilin-1/metabolism , Oligopeptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...