Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
ACS Appl Energy Mater ; 7(8): 3091-3098, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665895

ABSTRACT

Electrochemical CO2 reduction (CO2R) using heterogenized molecular catalysts usually yields 2-electron reduction products (CO, formate). Recently, it has been reported that certain preparations of immobilized cobalt phthalocyanine (CoPc) produce methanol (MeOH), a 6-electron reduction product. Here, we demonstrate the significant role of intermediate mass transport in CoPc selectivity to methanol. We first developed a simple, physically mixed, polymer (and polyfluoroalkyl, PFAS)-free preparation of CoPc on multiwalled carbon nanotubes (MWCNTs) which can be integrated onto Au electrodes using a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) adhesion layer. After optimization of catalyst preparation and loading, methanol Faradaic efficiencies and partial current densities of 36% (±3%) and 3.8 (±0.5) mA cm-2, respectively, are achieved in the CO2-saturated aqueous electrolyte. The electrolyte flow rate has a large effect. A linear flow velocity of 8.5 cm/min produces the highest MeOH selectivity, with higher flow rates increasing CO selectivity and lower flow rates increasing the hydrogen evolution reaction, suggesting that CO is an unbound intermediate. Using a continuum multiphysics model assuming CO is the intermediate, we show qualitative agreement with the optimal inlet flow rate. Polymer binders were not required to achieve a high Faradaic efficiency for methanol using CoPc and MWCNTs. We also investigated the role of formaldehyde as an intermediate and the role of strain, but definitive conclusions could not be established.

2.
ACS Catal ; 14(5): 3128-3138, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449526

ABSTRACT

Electrochemical CO2 reduction on Cu is a promising approach to produce value-added chemicals using renewable feedstocks, yet various Cu preparations have led to differences in activity and selectivity toward single and multicarbon products. Here, we find, surprisingly, that the effective catalytic activity toward ethylene improves when there is a larger fraction of less active sites acting as reservoirs of *CO on the surface of Cu nanoparticle electrocatalysts. In an adaptation of chemical transient kinetics to electrocatalysis, we measure the dynamic response of a gas diffusion electrode (GDE) cell when the feed gas is abruptly switched between Ar (inert) and CO. When switching from Ar to CO, CO reduction (COR) begins promptly, but when switching from CO to Ar, COR can be maintained for several seconds (delay time) despite the absence of the CO reactant in the gas phase. A three-site microkinetic model captures the observed dynamic behavior and shows that Cu catalysts exhibiting delay times have a less active *CO reservoir that exhibits fast diffusion to active sites. The observed delay times and the estimated *CO reservoir sizes are affected by catalyst preparation, applied potential, and microenvironment (electrolyte cation identity, electrolyte pH, and CO partial pressure). Notably, we estimate that the *CO reservoir surface coverage can be as high as 88 ± 7% on oxide-derived Cu (OD-Cu) at high overpotentials (-1.52 V vs SHE) and this increases in reservoir coverage coincide with increased turnover frequencies to ethylene. We also estimate that *CO can travel substantial distances (up to 10s of nm) prior to desorption or reaction. It appears that active C-C coupling sites by themselves do not control selectivity to C2+ products in electrochemical COR; the supply of CO to those sites is also a crucial factor. More generally, the overall activity of Cu electrocatalysts cannot be approximated from linear combinations of individual site activities. Future designs must consider the diversity of the catalyst network and account for intersite transportation pathways.

3.
ACS Appl Mater Interfaces ; 16(8): 9989-9998, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358461

ABSTRACT

Oxygen evolution reaction (OER) plays a crucial role as a counter half-reaction for both electrochemical hydrogen production through water splitting and the generation of valuable carbon compounds via CO2 reduction. To overcome the sluggish kinetics of the OER, significant efforts have been devoted to developing cost-effective, sustainable, and efficient electrocatalysts, with transition-metal-based catalysts emerging as promising candidates. Herein, we successfully synthesized a core-shell type nanostructure of Fe-doped CoMoOx/CoMoOx (CMFO), which exhibits excellent electrocatalytic properties for OER. The presence of an amorphous layer of Fe-doped CoMoOx with abundant oxygen vacancies, along with the stability of a key OER intermediate, *O, contributes to the enhanced activity of CMFO catalyst compared to pristine CoMoOx (CMO). The optimized catalyst of CMFO-550 achieved much lower overpotential and Tafel slope and also exhibited better remarkable long-term stability for over 90 h compared to CMO-550. These findings highlight the potential of CMFO-550 as a cost-effective and highly efficient electrocatalyst for the OER. The successful development of this core-shell nanostructure opens up a new opportunity for the design and synthesis of advanced electrocatalysts for the OER, with implications for various applications in energy conversion and storage.

4.
Angew Chem Int Ed Engl ; 63(1): e202316264, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37983973

ABSTRACT

The local confinement effect, which can generate a high concentration of hydroxide ions and reaction intermediates near the catalyst surface, is an important strategy for converting CO2 into multi-carbon products in electrocatalytic CO2 reduction. Therefore, understanding how the shape and dimension of the confinement geometry affect the product selectivity is crucial. In this study, we report for the first time the effect of the shape (degree of confinement) and dimension of the confined space on the product selectivity without changing the intrinsic property of Cu. We demonstrate that geometry influences the outcomes of products, such as CH4 , C2 H4 , and EtOH, in different ways: the selectivity of CH4 and EtOH is affected by shape, while the selectivity of C2 H4 is influenced by dimension of geometry predominantly. These phenomena are demonstrated, both experimentally and through simulation, to be induced by the local confinement effect within the confined structure. Our geometry model could serve as basis for designing the confined structures tailored for the production of specific products.

5.
Nat Nanotechnol ; 19(3): 269-270, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38151643
6.
Nano Lett ; 23(22): 10164-10170, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934978

ABSTRACT

Formation of charged trions is detrimental to the luminescence quantum efficiency of colloidal quantum dot (QD) thin films as they predominantly undergo nonradiative recombination. In this regard, control of charged trion formation is of interest for both fundamental characterization of the quasi-particles and performance optimization. Using CdSe/CdS QDs as a prototypical material system, here we demonstrate a metal-oxide-semiconductor capacitor based on QD thin films for studying the background charge effect on the luminescence efficiency and lifetime. The concentration ratio of the charged and neutral quasiparticles in the QDs is reversibly controlled by applying a gate voltage, while simultaneous steady-state and time-resolved photoluminescence measurements are performed. Notably, the photoluminescence intensity is modulated by up to 2 orders of magnitude with a corresponding change in the effective lifetime. In addition, chip-scale modulation of brightness is demonstrated, where the photoluminescence is effectively turned on and off by the gate, highlighting potential applications in voltage-controlled electrochromics.

7.
iScience ; 26(10): 107834, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37954138

ABSTRACT

We discovered that CO2 electroreduction strongly favors the conversion of the dominant isotope of carbon (12C) and discriminates against the less abundant, stable carbon 13C isotope. Both absorption of CO2 in the alkaline electrolyte and CO2 electrochemical reduction favor the lighter isotopologue. As a result, the stream of unreacted CO2 leaving the electrolyzer has an increased 13C content, and the depletion of 13C in the product is several times greater than that of photosynthesis. Using a natural abundance feed, we demonstrate enriching of the 13C fraction to ∼1.3% (i.e., +18%) in a single-pass reactor and propose a scalable and economically attractive process to yield isotopes of a commercial purity. Our finding opens pathways to both cheaper and less energy-intensive production of stable isotopes (13C, 15N) essential to the healthcare and chemistry research, and to an economically viable, disruptive application of electrolysis technologies developed in the context of sustainability transition.

8.
ACS Appl Mater Interfaces ; 15(40): 47649-47660, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782678

ABSTRACT

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

9.
Small ; 19(41): e2301379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37300346

ABSTRACT

The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.

10.
Adv Mater ; 35(25): e2210176, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36943743

ABSTRACT

The power conversion efficiency (PCE) of the state-of-the-art large-area slot-die-coated perovskite solar cells (PSCs) is now over 19%, but issues with their stability persist owing to significant intrinsic point defects and a mass of surface imperfections introduced during the fabrication process. Herein, the utilization of a hydrophobic all-organic salt is reported to modify the top surface of large-area slot-die-coated methylammonium (MA)-free halide perovskite layers. Bearing two molecules, each of which is endowed with anchoring groups capable of exhibiting secondary interactions with the perovskite surfaces, the organic salt acts as a molecular lock by effectively binding to both anion and cation vacancies, substantially enhancing the materials' intrinsic stability against different stimuli. It not only reduces the ingression of external species such as oxygen and moisture, but also suppresses the egress of volatile organic components during the thermal stability testing. The treated PSCs demonstrate efficiency of 19.28% (active area of 58.5 cm2 ) and 17.62% (aperture area of 64 cm2 ) for the corresponding mini-module. More importantly, unencapsulated slot-die-coated mini-modules incorporating the all-organic surface modifier show ≈80% efficiency retention after 7500 h (313 days) of storage under 30% relative humidity (RH). They also remarkably retain more than 90% of the initial efficiency for over 850 h while being measured continuously.

11.
Mater Horiz ; 10(2): 536-546, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36426759

ABSTRACT

Mixed-dimensional perovskites containing mixtures of organic cations hold great promise to deliver highly stable and efficient solar cells. However, although a plethora of relatively bulky organic cations have been reported for such purposes, a fundamental understanding of the materials' structure, composition, and phase, along with their correlated effects on the corresponding optoelectronic properties and degradation mechanism remains elusive. Herein, we systematically engineer the structures of bulky organic cations to template low-dimensional perovskites with contrasting inorganic framework dimensionality, connectivity, and coordination deformation. By combining X-ray single-crystal structural analysis with depth-profiling XPS, solid-state NMR, and femtosecond transient absorption, it is revealed that not all low-dimensional species work equally well as dopants. Instead, it was found that inorganic architectures with lesser structural distortion tend to yield less disordered energetic and defect landscapes in the resulting mixed-dimensional perovskites, augmented in materials with a longer photoluminescence (PL) lifetime, higher PL quantum yield (up to 11%), improved solar cell performance and enhanced thermal stability (T80 up to 1000 h, unencapsulated). Our study highlights the importance of designing templating organic cations that yield low-dimensional materials with much less structural distortion profiles to be used as additives in stable and efficient perovskite solar cells.

12.
Adv Mater ; 35(2): e2207041, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36281800

ABSTRACT

Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.

13.
Phys Rev Lett ; 128(8): 085901, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35275649

ABSTRACT

Isotopically purified semiconductors potentially dissipate heat better than their natural, isotopically mixed counterparts as they have higher thermal conductivity (κ). But the benefit is low for Si at room temperature, amounting to only ∼10% higher κ for bulk ^{28}Si than for bulk natural Si (^{nat}Si). We show that in stark contrast to this bulk behavior, ^{28}Si (99.92% enriched) nanowires have up to 150% higher κ than ^{nat}Si nanowires with similar diameters and surface morphology. Using a first-principles phonon dispersion model, this giant isotope effect is attributed to a mutual enhancement of isotope scattering and surface scattering of phonons in ^{nat}Si nanowires, correlated via transmission of phonons to the native amorphous SiO_{2} shell. The Letter discovers the strongest isotope effect of κ at room temperature among all materials reported to date and inspires potential applications of isotopically enriched semiconductors in microelectronics.

14.
ACS Nano ; 16(2): 2942-2952, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35040632

ABSTRACT

Extending halide perovskites' optoelectronic properties to stimuli-responsive chromism enables switchable optoelectronics, information display, and smart window applications. Here, we demonstrate a band gap tunability (chromism) via crystal structure transformation from three-dimensional FAPbBr3 to a ⟨110⟩ oriented FAn+2PbnBr3n+2 structure using a mono-halide/cation composition (FA/Pb) tuning. Furthermore, we illustrate reversible photochromism in halide perovskite by modulating the intermediate n phase in the FAn+2PbnBr3n+2 structure, enabling greater control of the optical band gap and luminescence of a ⟨110⟩ oriented mono-halide/cation perovskite. Proton transfer reaction-mass spectroscopy carried out to precisely quantify the decomposition product reveals that the organic solvent in the film is a key contributor to the structural transformation and, therefore, the chromism in the ⟨110⟩ structure. These intermediate n phases (2 ≤ n ≤ ∞) stabilize in metastable states in the FAn+2PbnBr3n+2 system, which is accessible via strain or optical or thermal input. The structure reversibility in the ⟨110⟩ perovskite allowed us to demonstrate a class of photochromic sensors capable of self-adaptation to lighting.

15.
Sci Adv ; 7(50): eabk1788, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34890227

ABSTRACT

Metal leaching during water oxidation has been typically observed in conjunction with surface reconstruction on perovskite oxide catalysts, but the role of metal leaching at each geometric site has not been distinguished. Here, we manipulate the occurrence and process of surface reconstruction in two model ABO3 perovskites, i.e., SrSc0.5Ir0.5O3 and SrCo0.5Ir0.5O3, which allow us to evaluate the structure and activity evolution step by step. The occurrence and order of leaching of Sr (A-site) and Sc/Co (B-site) were controlled by tailoring the thermodynamic stability of B-site. Sr leaching from A-site mainly generates more electrochemical surface area for the reaction, and additional leaching of Sc/Co from B-site triggers the formation of a honeycomb-like IrOxHy phase with a notable increase in intrinsic activity. A thorough surface reconstruction with dual-site metal leaching induces an activity improvement by approximately two orders of magnitude, which makes the reconstructed SrCo0.5Ir0.5O3 among the best for water oxidation in acid.

16.
STAR Protoc ; 2(4): 100889, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34723210

ABSTRACT

Recycling of waste CO2 to bulk chemicals has a tremendous potential for the decarbonization of the chemical industry. Quantitative analysis of the prospects of this technology is hindered by the lack of flexible techno-economic assessment (TEA) models that enable evaluation of the processing costs under different deployment scenarios. In this protocol, we explain how to convert literature data into metrics useful for evaluation of the emerging electrolysis technologies, derive TEA models, and illustrate their use with a CO2-to-ethylene example. For complete details on the use and execution of this protocol, please refer to Barecka et al. (2021a).


Subject(s)
Carbon Dioxide , Electrolysis , Recycling , Chemical Industry , Waste Management
17.
J Chem Phys ; 155(16): 164701, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34717370

ABSTRACT

Kinetic Monte Carlo (KMC) methods are frequently used for mechanistic studies of thermally driven heterogeneous catalysis systems but are underused for electrocatalysis. Here, we develop a lattice KMC approach for electrocatalytic CO2 reduction. The work is motivated by a prior experimental report that performed electroreduction of a mixed feed of 12CO2 and 13CO on Cu; differences in the 13C content of C2 products ethylene and ethanol (Δ13C) were interpreted as evidence of site selectivity. The lattice KMC model considers the effect of surface diffusion on this system. In the limit of infinitely fast diffusion (mean-field approximation), the key intermediates 12CO* and 13CO* would be well mixed on the surface and no evidence of site selectivity could have been observed. Using a simple two-site model and adapting a previously reported microkinetic model, we assess the effects of diffusion on the relative isotope fractions in the products using the estimated surface diffusion rate of CO* from literature reports. We find that the size of the active sites and the total surface adsorbate coverage can have a large influence on the values of Δ13C that can be observed. Δ13C is less sensitive to the CO* diffusion rate as long as it is within the estimated range. We further offer possible methods to estimate surface distribution of intermediates and to predict intrinsic selectivity of active sites based on experimental observations. This work illustrates the importance of considering surface diffusion in the study of electrochemical CO2 reduction to multi-carbon products. Our approach is entirely based on a freely available open-source code, so will be readily adaptable to other electrocatalytic systems.

18.
ACS Nano ; 15(12): 19119-19127, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34709042

ABSTRACT

Band structure engineering offers a perfect route to tune the transport properties of electrons and holes independently, especially in semiconductors for water splitting. Here, we explore the possibility of achieving a bias-free single-step solar to chemical energy conversion using gas-phase moisture as the reactant while generating hydrogen as the reaction product. A metal-based superhygroscopic hydrogel scavenges moisture from the ambient environment and serves as the water source. The FeOOH/BiVO4 heterojunction works as the photoanode wherein the interface allows the transport of electrons to the outer layer, resulting in an upward band bending. Concomitantly, the negative charges will accumulate on the Cu2O surface in the FeOOH/Cu2O photocathode, inducing a downward band bending. With the use of the hydrogel, photoanode, and photocathode, a device for directly splitting the moisture absorbed from the ambient air is realized, generating a photocurrent of 0.75 mA cm-2 under the one-sun intensity of cool daylight without any additional bias. The solar-cell-assisted device can split 6 mg of moisture in 10 h, and the hydrogel can absorb more than 30 mg of moisture in the same period.

19.
JACS Au ; 1(1): 108-115, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-34467274

ABSTRACT

Perovskite oxides based on earth-abundant transition metals have been extensively explored as promising oxygen evolution reaction (OER) catalysts in alkaline media. The (electro)chemically induced transformation of their initially crystalline surface into an amorphous state has been reported for a few highly active perovskite catalysts. However, little knowledge is available to distinguish the contribution of the amorphized surface from that of the remaining bulk toward the OER. In this work, we utilize the promoting effects of two types of Fe modification, i.e., bulk Fe dopant and Fe ions absorbed from the electrolyte, on the OER activity of SrCoO3-δ model perovskite to identify the active phase. Transmission electron microscopy and X-ray photoelectron spectroscopy confirmed the surface amorphization of SrCoO3-δ as well as SrCo0.8Fe0.2O3-δ after potential cycling in Fe-free KOH solution. By further cycling in Fe-spiked electrolyte, Fe was incorporated into the amorphized surface of SrCoO3-δ (SrCoO3-δ + Fe3+), yielding approximately sixfold increase in activity. Despite the difference in remaining perovskites, SrCoO3-δ + Fe3+ and SrCo0.8Fe0.2O3-δ exhibited remarkably similar activity. These results reflect that the in situ developed surface species are directly responsible for the measured OER activity, whereas the remaining bulk phases have little impact.

20.
ACS Appl Mater Interfaces ; 13(34): 40513-40521, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34405982

ABSTRACT

If combined with renewably generated electricity, electrochemical CO2 reduction (E-CO2R) could be used as a sustainable source of chemicals and fuels. Tandem catalysis approaches are attractive for providing the product selectivity, which would be required for commercial applications. Here, we demonstrate a two-step tandem electrocatalytic E-CO2R with efficient conversion of the intermediate species. The catalyst scaffold is Si(100), which is etched to form a textured surface consisting of micron-sized pyramid structures with the {111} facets. Two metals are used in the electrocatalytic cascade: Ag is employed to perform a two-electron reduction of CO2 to the intermediate CO, and Cu performs conversion to more reduced products. Using high-angle physical vapor deposition, we form separated, micron-scale areas of the two electrocatalysts on opposite sides of the pyramids, with their relative surface coverages being tunable with the deposition angle. Compared to the textured scaffolds with blanket Ag and Cu used as controls, bimetallic pyramid tandem catalysts have higher current densities and much lower faradic efficiencies (FE) for CO. These effects are due to efficient conversion of the CO formed on Ag to more reduced products on Cu. Methane is the main product to be enhanced by the cascade pathway: a bimetallic catalyst with approximately equal coverages of Ag and Cu produces methane with a FE of 62% at -1.1 VRHE, corresponding to a partial current density of 12.7 mA cm-2. We estimate an intermediate conversion yield for the CO intermediate of 80-90%, which is close to the mass-transport limited value predicted by reaction-diffusion simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...