Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 12(1): 239, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726280

ABSTRACT

Light emission of europium (Eu3+) ions placed in the vicinity of optically resonant nanoantennas is usually controlled by tailoring the local density of photon states (LDOS). We show that the polarization and shape of the excitation beam can also be used to manipulate light emission, as azimuthally or radially polarized cylindrical vector beam offers to spatially shape the electric and magnetic fields, in addition to the effect of silicon nanorings (Si-NRs) used as nanoantennas. The photoluminescence (PL) mappings of the Eu3+ transitions and the Si phonon mappings are strongly dependent of both the excitation beam and the Si-NR dimensions. The experimental results of Raman scattering and photoluminescence are confirmed by numerical simulations of the near-field intensity in the Si nanoantenna and in the Eu3+-doped film, respectively. The branching ratios obtained from the experimental PL maps also reveal a redistribution of the electric and magnetic emission channels. Our results show that it could be possible to spatially control both electric and magnetic dipolar emission of Eu3+ ions by switching the laser beam polarization, hence the near field at the excitation wavelength, and the electric and magnetic LDOS at the emission wavelength. This paves the way for optimized geometries taking advantage of both excitation and emission processes.

2.
Sci Rep ; 11(1): 5620, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33692391

ABSTRACT

Optical metasurfaces have raised immense expectations as cheaper and lighter alternatives to bulk optical components. In recent years, novel components combining multiple optical functions have been proposed pushing further the level of requirement on the manufacturing precision of these objects. In this work, we study in details the influence of the most common fabrication errors on the optical response of a metasurface and quantitatively assess the tolerance to fabrication errors based on extensive numerical simulations. We illustrate these results with the design, fabrication and characterization of a silicon nanoresonator-based metasurface that operates as a beam deflector in the near-infrared range.

3.
Acta Biomater ; 48: 357-367, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27856284

ABSTRACT

Beetles from the genus Chrysina show vivid reflections from bright green to metallic silver-gold as a consequence of the cholesteric liquid crystal organization of chitin molecules. Particularly, the cuticle of Chrysina gloriosa exhibits green and silver stripes. By combining confocal microscopy and spectrophotometry, scanning electron microscopy and numerical simulations, the relationship between the reflectance and the structural parameters for both stripes at the micro- and nanoscales are established. Over the visible and near IR spectra, polygonal cells in tessellated green stripes behave as multiwavelength selective micro-mirrors and the silver stripes as specular broadband mirrors. Thermoregulation, conspecifics or intra-species communication, or camouflage against predators are discussed as possible functions. As a prerequisite to bio-inspired artificial replicas, the physical characteristics of the polygonal texture in Chrysina gloriosa cuticle are compared to their equivalents in synthetic cholesteric oligomers and their fundamental differences are ascertained. It is shown that the cuticle has concave cells whereas the artificial films have convex cells, contrary to expectation and assumption in the literature. The present results may provide inspiration for fabricating multiwavelength selective micromirrors or spatial wavelength-specific light modulators. STATEMENT OF SIGNIFICANCE: Many insects own a tessellated carapace with bumps, pits or indentations. Little is known on the physical properties of these geometric variations and biological functions are unknown or still debated. We show that the polygonal cells in scarab beetle Chrysina gloriosa behave as multiwavelength selective micromirrors over the visible and infrared spectra, with a variety of spatial patterns. In the context of biomimetic materials, we demonstrate that the carapace has concave cells whereas the artificial films have convex cells, contrary to expectation in the literature. Thermoregulation, communication or camouflage are discussed as advanced functions. Results may provide inspiration for fabricating spatial wavelength-specific light modulators and optical packet switching in routing technologies.


Subject(s)
Coleoptera/anatomy & histology , Integumentary System/anatomy & histology , Light , Optics and Photonics , Animals , Coleoptera/ultrastructure , Computer Simulation , Pigmentation
4.
Opt Lett ; 40(20): 4763-6, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469614

ABSTRACT

In cholesteric liquid-crystalline microlenses, we have studied the role of the microlens size on the focused light intensity and the focal length. We have found that the intensity is maximized by aiming a specific range for the diameter and the thickness of microlenses and that the focal length is adjusted by controlling the diameter and the annealing time of the optical film. Cholesteric microlenses may be used as wavelength-tunable directional light sources in organic soft-matter circuits.

5.
Article in English | MEDLINE | ID: mdl-25353495

ABSTRACT

In cholesteric liquid-crystalline gels, the mechanical role of the polymer network over the structure of the whole gel has been ignored. We show that it is the stress gradient exerted by the network over the helical structure that drives the broadening of the optical band gap, as evidenced by the absence of a gradient in chiral species. Model calculations and finite-difference time-domain simulations show that the network acts as a spring with a stiffness gradient. The present results indicate a revision to the common understanding of the physical properties of liquid-crystalline gels is necessary when a concentration gradient in a polymer network is present.

6.
Lab Chip ; 14(12): 2063-71, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24789329

ABSTRACT

The ability to guide light on the mesoscopic scale is important both scientifically and technologically. Especially relevant is the development of wavelength-tunable light-shaping microdevices. Here we demonstrate the use of cholesteric liquid crystal polygonal textures organized as an array of microlenses for this purpose. The beam shaping is controlled by tuning the wavelength of the incident light in the visible spectrum. By taking advantage of the self-organization property of liquid crystals, the structure of the lens and its optical response are tailored by changing the annealing time of the single layer material during a completely integrated one-step process. The intrinsic helical organization of the layer is the cause of the light shaping and not the shape of the surface as for conventional lenses. A new concept of light manipulation using the structure chirality of liquid crystals is demonstrated, which concerns soft matter photonic circuits to mould the light.

7.
Article in English | MEDLINE | ID: mdl-23679501

ABSTRACT

A universal description of the effects of additive noise on super- and subcritical spatial bifurcations in one-dimensional systems is theoretically, numerically, and experimentally studied. The probability density of the critical spatial mode amplitude is derived. From this generalized Rayleigh distribution we predict the shape of noisy bifurcations by means of the most probable value of the critical mode amplitude. Comparisons with numerical simulations are in quite good agreement for cubic or quintic amplitude equations accounting for stochastic supercritical bifurcation and for cubic-quintic amplitude equation accounting for stochastic subcritical bifurcation. Experimental results obtained in a one-dimensional Kerr-like slice subjected to optical feedback confirm the analytical expression prediction for the supercritical bifurcation shape.

8.
J Phys Chem B ; 115(20): 6421-6, 2011 May 26.
Article in English | MEDLINE | ID: mdl-21534578

ABSTRACT

An unpolarized normal-incidence light beam reflected by a cholesteric liquid crystal is left- or right-circularly polarized, in the cholesteric temperature range. In this article, we present a novel approach for fabricating a cholesteric liquid crystalline material that exhibits reflection bands with both senses of polarization at room temperature. A cholesteric liquid crystal that presents a twist inversion at a critical temperature T(c) is blended with a small quantity of photopolymerizable monomers. Upon ultraviolet irradiation above T(c), the liquid crystal becomes a polymer-stabilized liquid crystal. Below T(c), the material reflects a dual circularly polarized band in the infrared. By quenching the experimental cell at a temperature below the blend's melting point, the optical properties of the material in an undercooled state are conserved for months at room temperature, which is critical to potential applications such as heat-repelling windows and polarization-independent photonic devices.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 2): 026218, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18352114

ABSTRACT

A universal analytical expression for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in the presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation, leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location, and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-type slice subjected to optical feedback are in excellent agreement.

10.
Phys Rev Lett ; 92(4): 043901, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14995373

ABSTRACT

Experimental evidence of convective and absolute instabilities in a nonlinear optical system is given. In optics, the presence of spatial nonuniformities brings in additional complexity. Hence, signatures characterizing these two regimes are derived based on analytical and numerical investigations. The corresponding noise-sustained and dynamical patterns are observed experimentally in a liquid crystal layer subjected to a laser beam with tilted feedback.

SELECTION OF CITATIONS
SEARCH DETAIL
...