Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(11): 2193-2202, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35226038

ABSTRACT

The concept of origami has influenced the development of responsive materials that can mimic complex functions performed by living organisms. An ultimate goal is to discover and design soft materials that can be remotely actuated into diverse structures. To achieve this goal, we design and synthesize here a light-responsive spiropyran hydrogel system that can display dynamic shape changes upon irradiation with local light. We use a continuum polymer model to analyze the behavior of the constructed photoactive hydrogel, which is in good agreement with the experimental results. We explore different buckling modalities and patterns in a different range of parameters. The synthesis and fabrication of these materials demonstrate that the theoretical model can be used to drive the development of responsive photoactive systems.


Subject(s)
Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry
2.
Nano Lett ; 21(7): 2975-2981, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33755479

ABSTRACT

Advances in nanofabrication techniques have made it feasible to observe damping phenomena beyond the linear regime in nanomechanical systems. In this work, we report cubic nonlinear damping in palladium nanomechanical resonators. Nanoscale palladium beams exposed to a H2 atmosphere become softer and display enhanced Duffing nonlinearity as well as nonlinear damping at ultralow temperatures. The damping is highest at the lowest temperatures of ∼110 mK and decreases when warmed up to ∼1 K. We experimentally demonstrate for the first time temperature-dependent nonlinear damping in a nanomechanical system below 1 K. This is consistent with a predicted two-phonon-mediated nonlinear Akhiezer scenario with a ballistic phonon mean free path comparable to the beam thickness. This opens up new possibilities to engineer nonlinear phenomena at low temperatures.

3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649242

ABSTRACT

Patterns and morphology develop in living systems such as embryos in response to chemical signals. To understand and exploit the interplay of chemical reactions with mechanical transformations, chemomechanical polymer systems have been synthesized by attaching chemicals into hydrogels. In this work, we design autonomous responsive elastic shells that undergo morphological changes induced by chemical reactions. We couple the local mechanical response of the gel with the chemical processes on the shell. This causes swelling and deswelling of the gel, generating diverse morphological changes, including periodic oscillations. We further introduce a mechanical instability and observe buckling-unbuckling dynamics with a response time delay. Moreover, we investigate the mechanical feedback on the chemical reaction and demonstrate the dynamic patterns triggered by an initial deformation. We show the chemical characteristics that account for the shell morphology and discuss the future designs for autonomous responsive materials.

4.
Sci Robot ; 5(49)2020 12 09.
Article in English | MEDLINE | ID: mdl-33298516

ABSTRACT

The design of soft matter in which internal fuels or an external energy input can generate locomotion and shape transformations observed in living organisms is a key challenge. Such materials could assist in productive functions that may range from robotics to smart management of chemical reactions and communication with cells. In this context, hydrated matter that can function in aqueous media would be of great interest. Here, we report the design of hydrogels containing a scaffold of high-aspect ratio ferromagnetic nanowires with nematic order dispersed in a polymer network that change shape in response to light and experience torques in rotating magnetic fields. The synergistic response enables fast walking motion of macroscopic objects in water on either flat or inclined surfaces and also guides delivery of cargo through rolling motion and light-driven shape changes. The theoretical description of the response to the external energy input allowed us to program specific trajectories of hydrogel objects that were verified experimentally.


Subject(s)
Robotics/instrumentation , Biomimetic Materials , Biomimetics , Electric Power Supplies , Hydrogels , Light , Magnetic Fields , Magnetite Nanoparticles/chemistry , Metals , Motion , Nanowires/chemistry , Photochemical Processes , Polymers , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...