Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38198265

ABSTRACT

Temporal graph learning has attracted great attention with its ability to deal with dynamic graphs. Although current methods are reasonably accurate, most of them are unexplainable due to their black-box nature. It remains a challenge to explain how temporal graph learning models adapt to information evolution. Furthermore, with the increasing application of artificial intelligence in various scientific domains, such as chemistry and biomedicine, the importance of delivering not only precise outcomes but also offering explanations regarding the learning models becomes paramount. This transparency aids users in comprehending the decision-making procedures and instills greater confidence in the generated models. To address this issue, this article proposes a novel physics-informed explainable continual learning (PiECL), focusing on temporal graphs. Our proposed method utilizes physical and mathematical algorithms to quantify the disturbance of new data to previous knowledge for obtaining changed information over time. As the proposed model is based on theories in physics, it can provide a transparent underlying mechanism for information evolution detection, thus enhancing explainability. The experimental results on three real-world datasets demonstrate that PiECL can explain the learning process, and the generated model outperforms other state-of-the-art methods. PiECL shows tremendous potential for explaining temporal graph learning in various scientific contexts.

2.
Article in English | MEDLINE | ID: mdl-36409805

ABSTRACT

In numerous network analysis tasks, feature representation plays an imperative role. Due to the intrinsic nature of networks being discrete, enormous challenges are imposed on their effective usage. There has been a significant amount of attention on network feature learning in recent times that has the potential of mapping discrete features into a continuous feature space. The methods, however, lack preserving the structural information owing to the utilization of random negative sampling during the training phase. The ability to effectively join attribute information to embedding feature space is also compromised. To address the shortcomings identified, a novel attribute force-based graph (AGForce) learning model is proposed that keeps the structural information intact along with adaptively joining attribute information to the node's features. To demonstrate the effectiveness of the proposed framework, comprehensive experiments on benchmark datasets are performed. AGForce based on the spring-electrical model extends opportunities to simulate node interaction for graph learning.

3.
Proc Int Conf Web Search Data Min ; 2017: 455-464, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28626845

ABSTRACT

The problem of evolutionary network analysis has gained increasing attention in recent years, because of an increasing number of networks, which are encountered in temporal settings. For example, social networks, communication networks, and information networks continuously evolve over time, and it is desirable to learn interesting trends about how the network structure evolves over time, and in terms of other interesting trends. One challenging aspect of networks is that they are inherently resistant to parametric modeling, which allows us to truly express the edges in the network as functions of time. This is because, unlike multidimensional data, the edges in the network reflect interactions among nodes, and it is difficult to independently model the edge as a function of time, without taking into account its correlations and interactions with neighboring edges. Fortunately, we show that it is indeed possible to achieve this goal with the use of a matrix factorization, in which the entries are parameterized by time. This approach allows us to represent the edge structure of the network purely as a function of time, and predict the evolution of the network over time. This opens the possibility of using the approach for a wide variety of temporal network analysis problems, such as predicting future trends in structures, predicting links, and node-centric anomaly/event detection. This flexibility is because of the general way in which the approach allows us to express the structure of the network as a function of time. We present a number of experimental results on a number of temporal data sets showing the effectiveness of the approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...