Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22(16): 19169-82, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25321003

ABSTRACT

We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr(3+)) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.7kW. A thorough fibre design optimisation was conducted using measured material dispersion (As-Se/Ge-As-Se) and measured fibre loss obtained in fabricated fibre of the same materials. The loss was below 2.5dB/m in the 3.3-9.4µm region. Fibres with 8 and 10µm core diameters generated an SC out to 12.5 and 10.7µm in less than 2m of fibre when pumped with 0.75 and 1kW, respectively. Larger core fibres with 20µm core diameters for potential higher power handling generated an SC out to 10.6µm for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10µm band was 7.5 and 8.8mW for the 8 and 10µm fibres, respectively. For the 20µm core fibres up to 46mW was converted.

2.
Opt Express ; 20(5): 4887-92, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418294

ABSTRACT

Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy. The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 µm resolution.


Subject(s)
Fiber Optic Technology/instrumentation , Image Enhancement/instrumentation , Lighting/instrumentation , Microscopy/instrumentation , Equipment Design , Equipment Failure Analysis , Infrared Rays , Reproducibility of Results , Sensitivity and Specificity
3.
Opt Lett ; 36(13): 2596-8, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21725491

ABSTRACT

In this Letter, we propose a generic nonlinear coupling coefficient, η(NL)²=η|γ/ß2|(fiber2)/|γ/ß2|(fiber1), which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η(NL) to demonstrate a significant soliton self-frequency shift of a fundamental soliton, and we show that nonlinear matching can take precedence over linear mode matching. The nonlinear coupling coefficient depends on both the dispersion (ß2) and nonlinearity (γ), as well as on the power coupling efficiency η. Being generic, η(NL) enables engineering of general waveguide systems, e.g., for optimized Raman redshift or supercontinuum generation.

4.
Opt Express ; 16(25): 20834-47, 2008 Dec 08.
Article in English | MEDLINE | ID: mdl-19065222

ABSTRACT

We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain spectrum (a shift of the Stokes- or anti-Stokes wavelength) caused by the selective capture of biomolecules by a sensor layer immobilised on the walls of the holes in the fiber. We find that such changes in the MI gain spectrum can be made detectable, and that engineering of the dispersion is important for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4 nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor.


Subject(s)
Biopolymers/analysis , Biosensing Techniques/instrumentation , Computer-Aided Design , Models, Theoretical , Optical Fibers , Photometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Nonlinear Dynamics , Scattering, Radiation , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...