Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Circulation ; 148(9): 778-797, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37427428

ABSTRACT

BACKGROUND: Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS: In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS: We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS: Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.


Subject(s)
Cardiomyopathies , RNA, Long Noncoding , Animals , Humans , Transcriptome , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cardiomyopathies/genetics , Fibrosis , Sequence Analysis, RNA , Transcription Factors/genetics , Infarction , Mammals/genetics , Mammals/metabolism , Ligases/genetics , Ligases/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
2.
Am J Physiol Heart Circ Physiol ; 324(4): H504-H518, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36800508

ABSTRACT

Upon myocardial infarction (MI), ischemia-induced cell death triggers an inflammatory response responsible for removing necrotic material and inducing tissue repair. TRPM4 is a Ca2+-activated ion channel permeable to monovalent cations. Although its role in cardiomyocyte-driven hypertrophy and arrhythmia post-MI has been established, no study has yet investigated its role in the inflammatory process orchestrated by endothelial cells, immune cells, and fibroblasts. This study aims to assess the role of TRPM4 in 1) survival and cardiac function, 2) inflammation, and 3) healing post-MI. We performed ligation of the left coronary artery or sham intervention on 154 Trpm4 WT or KO mice under isoflurane anesthesia. Survival and echocardiographic functions were monitored up to 5 wk. We collected serum during the acute post-MI phase to analyze proteomes and performed single-cell RNA sequencing on nonmyocytic cells of hearts after 24 and 72 h. Lastly, we assessed chronic fibrosis and angiogenesis. We observed no significant differences in survival or cardiac function, even though our proteomics data showed significantly decreased tissue injury markers (i.e., creatine kinase M and VE-cadherin) in KO serum after 12 h. On the other hand, inflammation, characterized by serum amyloid P component in the serum, higher number of recruited granulocytes, inflammatory monocytes, and macrophages, as well as expression of proinflammatory genes, was significantly higher in KO. This correlated with increased chronic cardiac fibrosis and angiogenesis. Since inflammation and fibrosis are closely linked to adverse remodeling, future therapeutic attempts at inhibiting TRPM4 will need to assess these parameters carefully before proceeding with translational studies.NEW & NOTEWORTHY Deletion of Trpm4 increases markers of cardiac and systemic inflammation within the first 24 h after MI, while inducing an earlier fibrotic transition at 72 h and more overall chronic fibrosis and angiogenesis at 5 wk. The descriptive, robust, and methodologically broad approach of this study sheds light on an important caveat that will need to be taken into account in all future therapeutic attempts to inhibit TRPM4 post-MI.


Subject(s)
Myocardial Infarction , TRPM Cation Channels , Mice , Animals , Endothelial Cells/metabolism , Multiomics , Myocytes, Cardiac/metabolism , Inflammation/metabolism , Fibrosis , Mice, Inbred C57BL , Mice, Knockout , Ventricular Remodeling , Myocardium/metabolism , Disease Models, Animal , TRPM Cation Channels/genetics
3.
Cardiovasc Res ; 119(6): 1361-1376, 2023 06 13.
Article in English | MEDLINE | ID: mdl-36537036

ABSTRACT

AIMS: The major cardiac cell types composing the adult heart arise from common multipotent precursor cells. Cardiac lineage decisions are guided by extrinsic and cell-autonomous factors, including recently discovered long noncoding RNAs (lncRNAs). The human lncRNA CARMEN, which is known to dictate specification toward the cardiomyocyte (CM) and the smooth muscle cell (SMC) fates, generates a diversity of alternatively spliced isoforms. METHODS AND RESULTS: The CARMEN locus can be manipulated to direct human primary cardiac precursor cells (CPCs) into specific cardiovascular fates. Investigating CARMEN isoform usage in differentiating CPCs represents therefore a unique opportunity to uncover isoform-specific functions in lncRNAs. Here, we identify one CARMEN isoform, CARMEN-201, to be crucial for SMC commitment. CARMEN-201 activity is encoded within an alternatively spliced exon containing a MIRc short interspersed nuclear element. This element binds the transcriptional repressor REST (RE1 Silencing Transcription Factor), targets it to cardiogenic loci, including ISL1, IRX1, IRX5, and SFRP1, and thereby blocks the CM gene program. In turn, genes regulating SMC differentiation are induced. CONCLUSIONS: These data show how a critical physiological switch is wired by alternative splicing and functional transposable elements in a long noncoding RNA. They further demonstrated the crucial importance of the lncRNA isoform CARMEN-201 in SMC specification during heart development.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , DNA Transposable Elements , Heart , Cell Differentiation/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
4.
Cardiovasc Res ; 118(10): 2339-2353, 2022 07 27.
Article in English | MEDLINE | ID: mdl-34459880

ABSTRACT

AIMS: Production of functional cardiomyocytes from pluripotent stem cells requires tight control of the differentiation process. Long non-coding RNAs (lncRNAs) exert critical regulatory functions in cell specification during development. In this study, we designed an integrated approach to identify lncRNAs implicated in cardiogenesis in differentiating human embryonic stem cells (ESCs). METHODS AND RESULTS: We identified CARMA (CARdiomyocyte Maturation-Associated lncRNA), a conserved lncRNA controlling cardiomyocyte differentiation and maturation in human ESCs. CARMA is located adjacent to MIR-1-1HG, the host gene for two cardiogenic miRNAs: MIR1-1 and MIR-133a2, and transcribed in an antisense orientation. The expression of CARMA and the miRNAs are negatively correlated, and CARMA knockdown increases MIR1-1 and MIR-133a2 expression. In addition, CARMA possesses MIR-133a2 binding sites, suggesting the lncRNA could be also a target of miRNA action. Upon CARMA down-regulation, MIR-133a2 target protein-coding genes are coordinately down-regulated. Among those, we found RBPJ, the gene encoding the effector of the NOTCH pathway. NOTCH has been shown to control a binary cell fate decision between the mesoderm and the neuroectoderm lineages, and NOTCH inhibition leads to enhanced cardiomyocyte differentiation at the expense of neuroectodermal derivatives. Interestingly, two lncRNAs, linc1230 and linc1335, which are known repressors of neuroectodermal specification, were found up-regulated upon Notch1 silencing in ESCs. Forced expression of either linc1230 or linc1335 improved ESC-derived cardiomyocyte production. These two lncRNAs were also found up-regulated following CARMA knockdown in ESCs. CONCLUSIONS: Altogether, these data suggest the existence of a network, implicating three newly identified lncRNAs, the two myomirs MIR1-1 and MIR-133a2 and the NOTCH signalling pathway, for the coordinated regulation of cardiogenic differentiation in ESCs.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Differentiation/genetics , Cell Line , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Arterioscler Thromb Vasc Biol ; 40(8): 1942-1951, 2020 08.
Article in English | MEDLINE | ID: mdl-32493170

ABSTRACT

OBJECTIVE: Vascular calcification contributes to the cause of cardiovascular disease. The calciprotein particle maturation time (T50) in serum, a measure of calcification propensity, has been linked with adverse outcomes in patients with chronic kidney disease, but its role in the general population is unclear. We investigated whether serum T50 is associated with cardiovascular mortality in a large general population-based cohort. Approach and Results: The relationship between serum T50 and cardiovascular mortality was studied in 6231 participants of the PREVEND (Prevention of Renal and Vascular End-Stage Disease) cohort. All-cause mortality was the secondary outcome. Mean (±SD) age was 53±12 years, 50% were male, and mean serum T50 was 329±58 minutes. A shorter serum T50 is indicative of a higher calcification propensity. Serum T50 was inversely associated with circulating phosphate, age, estimated glomerular filtration rate, and alcohol consumption, whereas plasma magnesium was positively associated with serum T50 (P<0.001, total multivariable model R2=0.281). During median (interquartile range) follow-up for 8.3 (7.8-8.9) years, 364 patients died (5.8%), of whom 95 (26.1%) died from a cardiovascular cause. In multivariable Cox proportional hazard models, each 60 minutes decrease in serum T50 was independently associated with a higher risk of cardiovascular mortality (fully adjusted hazard ratio [95% CI], 1.22 [1.04-1.36], P=0.021). This association was modified by diabetes mellitus; stratified analysis indicated a more pronounced association in individuals with diabetes mellitus. CONCLUSIONS: Serum T50 is independently associated with an increased risk of cardiovascular mortality in the general population and thus may be an early and potentially modifiable risk marker for cardiovascular mortality.


Subject(s)
Cardiovascular Diseases/etiology , Vascular Calcification/blood , Adult , Aged , Cardiovascular Diseases/mortality , Cause of Death , Female , Humans , Kidney Failure, Chronic/prevention & control , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk
6.
Atherosclerosis ; 265: 78-86, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28865326

ABSTRACT

BACKGROUND AND AIMS: Vascular calcification is a common health problem related to oxidative stress, inflammation, and circulating calciprotein particles (CPP). Hydrogen sulfide is an endogenous signaling molecule with antioxidant properties and potential for drug development targeting redox signaling. Yet, its molecular mechanisms of action in vascular smooth muscle cell (VSMC) calcification have not been delineated. We therefore sought to identify key pathways involved in the calcification-inhibitory properties of sulfide employing our recently developed CPP-induced VSMC calcification model. METHODS: Using next-generation sequencing, we investigated the transcriptomic changes of sodium hydrosulfide-treated versus non-treated calcifying VSMCs. The potential role of candidate genes and/or regulatory pathways in prevention of calcification was investigated by small interfering RNA (siRNA). RESULTS: CPP led to a pronounced accumulation of cell-associated calcium, which was decreased by sulfide in a concentration-dependent manner. Both, CPP-induced hydrogen peroxide production and enhanced pro-inflammatory/oxidative stress-related gene expression signatures were attenuated by sulfide-treatment. Gene ontology enrichment and in silico pathway analysis of our transcriptome data suggested NAD(P)H dehydrogenase [quinone] 1 (NQO1) as potential mediator. Corroborating these findings, silencing of Kelch-like ECH-associated protein 1 (KEAP1), an inhibitor of nuclear factor (erythroid-derived 2)-like 2 (NRF2) nuclear activity, enhanced NQO1 expression, whereas NRF2 silencing reduced the expression of NQO1 and abrogated the calcification-suppressing activity of sulfide. Moreover, immunofluorescence microscopy and Western blot analysis confirmed nuclear translocation of NRF2 by sulfide in VSMC. CONCLUSIONS: Sulfide attenuates CPP-induced VSMC calcification in vitro via the KEAP1-NRF2 redox sensing/stress response system by enhancing NQO1 expression.


Subject(s)
Calcium/metabolism , Hydrogen Sulfide/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Sulfides/pharmacology , Vascular Calcification/prevention & control , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , NAD(P)H Dehydrogenase (Quinone)/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , RNA Interference , Signal Transduction/drug effects , Sulfides/metabolism , Transfection , Vascular Calcification/enzymology , Vascular Calcification/genetics , Vascular Calcification/pathology
7.
Sci Rep ; 7(1): 5686, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720774

ABSTRACT

Calciprotein particles, nanoscale aggregates of insoluble mineral and binding proteins, have emerged as potential mediators of phosphate toxicity in patients with Chronic Kidney Disease. Although existing immunochemical methods for their detection have provided compelling data, these approaches are indirect, lack specificity and are subject to a number of other technical and theoretical shortcomings. Here we have developed a rapid homogeneous fluorescent probe-based flow cytometric method for the detection and quantitation of individual mineral-containing nanoparticles in human and animal serum. This method allows the discrimination of membrane-bound from membrane-free particles and different mineral phases (amorphous vs. crystalline). Critically, the method has been optimised for use on a conventional instrument, without the need for manual hardware adjustments. Using this method, we demonstrate a consistency in findings across studies of Chronic Kidney Disease patients and commonly used uraemic animal models. These studies demonstrate that renal dysfunction is associated with the ripening of calciprotein particles to the crystalline state and reveal bone metabolism and dietary mineral as important modulators of circulating levels. Flow cytometric analysis of calciprotein particles may enhance our understanding of mineral handling in kidney disease and provide a novel indicator of therapeutic efficacy for interventions targeting Chronic Kidney Disease-Mineral Bone Disorder.


Subject(s)
Calcium Phosphates/blood , Flow Cytometry/methods , Nanoparticles/analysis , Animals , Chronic Kidney Disease-Mineral and Bone Disorder/blood , Fluorescent Dyes/chemistry , Humans , Male , Mice , Peritoneal Dialysis , Rats , Renal Dialysis , Renal Insufficiency, Chronic/blood , Uremia/blood
8.
World J Gastroenterol ; 22(25): 5678-93, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27433083

ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer death worldwide, which is consequence of multistep tumorigenesis of several genetic and epigenetic events. Since CRC is mostly asymptomatic until it progresses to advanced stages, the early detection using effective screening approaches, selection of appropriate therapeutic strategies and efficient follow-up programs are essential to reduce CRC mortalities. Biomarker discovery for CRC based on the personalized genotype and clinical information could facilitate the classification of patients with certain types and stages of cancer to tailor preventive and therapeutic approaches. These cancer-related biomarkers should be highly sensitive and specific in a wide range of specimen(s) (including tumor tissues, patients' fluids or stool). Reliable biomarkers which enable the early detection of CRC, can improve early diagnosis, prognosis, treatment response prediction, and recurrence risk. Advances in our understanding of the natural history of CRC have led to the development of different CRC associated molecular and cellular biomarkers. This review highlights the new trends and approaches in CRC biomarker discovery, which could be potentially used for early diagnosis, development of new therapeutic approaches and follow-up of patients.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Adenomatous Polyposis Coli Protein/genetics , Biomarkers, Tumor/metabolism , Chromosomal Instability/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , DNA Methylation , DNA, Neoplasm/blood , Feces/chemistry , Humans , Inflammation , MicroRNAs/blood , MicroRNAs/metabolism , Mutation , Neoplastic Cells, Circulating , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Telomere/metabolism , Transcriptome , Tumor Suppressor Protein p53/genetics , beta Catenin/genetics
9.
Atherosclerosis ; 251: 404-414, 2016 08.
Article in English | MEDLINE | ID: mdl-27289275

ABSTRACT

BACKGROUND AND AIMS: Vascular calcification is prevalent in clinical states characterized by low-grade chronic inflammation, such as chronic kidney disease (CKD). Calciprotein particles (CPP) are calcium phosphate-containing nano-aggregates, which have been found in the blood of CKD patients and appear pro-inflammatory in vitro. The interplay of CPPs and inflammatory cytokines with regard to the calcification of vascular smooth muscle cells (VSMC), in vitro, has not been investigated yet. METHODS: Primary or secondary CPP were generated using phosphate-enriched culture medium (DMEM/10% FBS) incubated at 37 °C. Human VSMC were cultured with these media and mineralization was measured. Expression of TNF-α was detected by qPCR, ELISA and Western blot in calcified VSMC. To further characterize the significance of TNF-α and its receptors for the calcification of VSMC, RNA interference experiments using siTNF-α, siTNFR1 and siTNFR2 were performed. RESULTS: The addition of phosphate to cell culture medium containing DMEM/10% FBS led to the rapid formation of primary CPP, which underwent spontaneous transformation to secondary CPP. Exposure of VSMC towards secondary CPP led to pronounced and concentration-dependent calcification, whereas exposure towards primary CPP did not. Importantly, secondary CPP induced oxidative stress, and led to the up-regulation and release of TNF-α. Addition of TNF-α to the cell culture medium enhanced, whereas the suppression of endogenous TNF-α or TNF receptor type 1 (TNFR1) expression by siRNA, ameliorated calcification. CONCLUSIONS: Secondary, but not primary CPP, induce VSMC calcification. Secondary CPP induce the expression and release of TNF-α, which enhances calcification via its receptor TNFR1.


Subject(s)
Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Tumor Necrosis Factor-alpha/metabolism , Vascular Calcification/pathology , Apoptosis , Calcium/blood , Cell Survival , Cells, Cultured , Culture Media , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Silencing , Humans , Inflammation , Myocytes, Smooth Muscle/pathology , Phosphates/blood , Phosphates/chemistry , Phosphorylation , Receptors, Tumor Necrosis Factor, Type I/metabolism
10.
PLoS One ; 9(5): e96984, 2014.
Article in English | MEDLINE | ID: mdl-24809455

ABSTRACT

The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics.


Subject(s)
Chemical Phenomena , Computational Biology/methods , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/classification , Animals , Data Mining , Decision Trees , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A virus , Mutation , Neural Networks, Computer , Support Vector Machine
11.
Genet Test Mol Biomarkers ; 18(4): 236-44, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24495131

ABSTRACT

Uncontrolled growth of cells, a main criterion of cancer, is merged with pathologic telomere length alteration. Thereby, measurement of telomere length could provide important information on cell proliferation and senescence in cancer tissues. Telomere shortening and its potential correlation with clinicopathological predictive markers in sporadic colorectal cancer (CRC) with normal expression of mismatch repair (MMR) proteins (including Mlh1, Msh2, Pms2, and Msh6) and normal p53 expression was completely explored. Relative telomere length (RTL) was quantitatively measured in a cohort of 164 samples (68 patients with sporadic CRC and 96 healthy unrelated controls). Our results demonstrated a significant shortening of RTL in the tumor-derived tissue of patients compared with the control group (p<0.001). Interestingly, significant telomere shortening was observed in tumors from an ascending and sigmoid colon in comparison with tumors located in a descending colon. Additionally, the telomere length was significantly shorter in those with lymph node metastasis (p<0.05). The results suggest that pathological telomere shortening, leading to genome instability and lymphatic transformation, could serve as a potential sensitive detection and also as a classification marker for facilitating diagnosis and management of CRC.


Subject(s)
Base Pair Mismatch , Biomarkers, Tumor , Colorectal Neoplasms/genetics , DNA Repair , Genes, p53 , Telomere Shortening , Adult , Aged , Aged, 80 and over , Cohort Studies , Colorectal Neoplasms/pathology , Humans , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...