Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Rep ; 14(1): 1084, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212349

ABSTRACT

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/psychology , Benchmarking , Brain/diagnostic imaging , Neuroimaging/methods , Machine Learning , Magnetic Resonance Imaging/methods
2.
Article in English | MEDLINE | ID: mdl-36958474

ABSTRACT

BACKGROUND: The highest risk of depression is conveyed by insomnia. This risk can be mitigated by sleep interventions. Understanding brain mechanisms underlying increased emotional stability following insomnia treatment could provide insight relevant to the prevention of depression. Here, we investigated how different sleep interventions alter emotion-related brain activity in people with insomnia at high risk of developing depression. METHODS: Functional magnetic resonance imaging was used to assess how the amygdala response to emotional stimuli (negative facial expression) in 122 people with insomnia disorder differed from 36 control subjects and how the amygdala response changed after 6 weeks of either no treatment or internet-based circadian rhythm support (CRS), cognitive behavioral therapy for insomnia (CBT-I), or their combination (CBT-I+CRS). Effects on depression, insomnia and anxiety severity were followed up for 1 year. RESULTS: Only combined treatment (CBT-I+CRS) significantly increased the amygdala response, compared with no treatment, CBT-I, and CRS. Individual differences in the degree of response enhancement were associated with improvement of insomnia symptoms directly after treatment (r = -0.41, p = .021). Moreover, exclusively CBT-I+CRS enhanced responsiveness of the left insula, which occurred in proportion to the reduction in depressive symptom severity (r = -0.37, p = .042). CONCLUSIONS: This functional magnetic resonance imaging study on insomnia treatment, the largest to date, shows that a combined cognitive, behavioral, and circadian intervention enhances emotional brain responsiveness and might improve resilience in patients with insomnia who are at high risk of developing depression.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Treatment Outcome , Brain , Emotions , Circadian Rhythm , Cognition
3.
Neurosci Biobehav Rev ; 158: 105450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37925091

ABSTRACT

Over the last decades, theoretical perspectives in the interdisciplinary field of the affective sciences have proliferated rather than converged due to differing assumptions about what human affective phenomena are and how they work. These metaphysical and mechanistic assumptions, shaped by academic context and values, have dictated affective constructs and operationalizations. However, an assumption about the purpose of affective phenomena can guide us to a common set of metaphysical and mechanistic assumptions. In this capstone paper, we home in on a nested teleological principle for human affective phenomena in order to synthesize metaphysical and mechanistic assumptions. Under this framework, human affective phenomena can collectively be considered algorithms that either adjust based on the human comfort zone (affective concerns) or monitor those adaptive processes (affective features). This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope the Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research.


Subject(s)
Arousal , Emotions , Humans
4.
Mol Psychiatry ; 28(3): 1079-1089, 2023 03.
Article in English | MEDLINE | ID: mdl-36653677

ABSTRACT

There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = -0.077, pFWE = 0.037; right: d = -0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = -0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = -0.141, pFWE < 0.001; right: d = -0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.


Subject(s)
Phobia, Social , Adult , Adolescent , Humans , Magnetic Resonance Imaging/methods , Brain , Anxiety , Neuroimaging/methods
5.
Depress Anxiety ; 39(7): 573-585, 2022 07.
Article in English | MEDLINE | ID: mdl-35536093

ABSTRACT

BACKGROUND: Comorbid anxiety disorders and anxious distress are highly prevalent in major depressive disorder (MDD). The presence of the DSM-5 anxious distress specifier (ADS) has been associated with worse treatment outcomes and chronic disease course. However, little is known about the neurobiological correlates of anxious distress in MDD. METHODS: We probed the relation between the DSM-5 ADS and task-related reactivity to emotional faces, as well as resting-state functional connectivity patterns of intrinsic salience and basal ganglia networks in unmedicated MDD patients with (MDD/ADS+, N = 24) and without ADS (MDD/ADS-, N = 48) and healthy controls (HC, N = 59). Both categorical and dimensional measures of ADS were investigated. RESULTS: MDD/ADS+ patients had higher left amygdala responses to emotional faces compared to MDD/ADS- patients (p = .015)-part of a larger striato-limbic cluster. MDD/ADS+ did not differ from MDD/ADS- or controls in resting-state functional connectivity of the salience or basal ganglia networks. CONCLUSIONS: Current findings suggest that amygdala and striato-limbic hyperactivity to emotional faces may be a neurobiological hallmark specific to MDD with anxious distress, relative to MDD without anxious distress. This may provide preliminary indications of the underlying mechanisms of anxious distress in depression, and underline the importance to account for heterogeneity in depression research.


Subject(s)
Depressive Disorder, Major , Anxiety/psychology , Anxiety Disorders/psychology , Depression , Depressive Disorder, Major/drug therapy , Humans , Magnetic Resonance Imaging , Neuroimaging
6.
Nat Neurosci ; 25(4): 421-432, 2022 04.
Article in English | MEDLINE | ID: mdl-35383335

ABSTRACT

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Subject(s)
Genome-Wide Association Study , Longevity , Aging/genetics , Brain , Humans , Longevity/genetics , Magnetic Resonance Imaging
7.
PLoS One ; 17(4): e0263769, 2022.
Article in English | MEDLINE | ID: mdl-35421108

ABSTRACT

BACKGROUND: Social functioning is often impaired in schizophrenia (SZ) and Alzheimer's disease (AD). However, commonalities and differences in social dysfunction among these patient groups remain elusive. MATERIALS AND METHODS: Using data from the PRISM study, behavioral (all subscales and total score of the Social Functioning Scale) and affective (perceived social disability and loneliness) indicators of social functioning were measured in patients with SZ (N = 56), probable AD (N = 50) and age-matched healthy controls groups (HC, N = 29 and N = 28). We examined to what extent social functioning differed between disease and age-matched HC groups, as well as between patient groups. Furthermore, we examined how severity of disease and mood were correlated with social functioning, irrespective of diagnosis. RESULTS: As compared to HC, both behavioral and affective social functioning seemed impaired in SZ patients (Cohen's d's 0.81-1.69), whereas AD patients mainly showed impaired behavioral social function (Cohen's d's 0.65-1.14). While behavioral indices of social functioning were similar across patient groups, SZ patients reported more perceived social disability than AD patients (Cohen's d's 0.65). Across patient groups, positive mood, lower depression and anxiety levels were strong determinants of better social functioning (p's <0.001), even more so than severity of disease. CONCLUSIONS: AD and SZ patients both exhibit poor social functioning in comparison to age- and sex matched HC participants. Social dysfunction in SZ patients may be more severe than in AD patients, though this may be due to underreporting by AD patients. Across patients, social functioning appeared as more influenced by mood states than by severity of disease.


Subject(s)
Alzheimer Disease , Schizophrenia , Humans , Loneliness , Schizophrenia/diagnosis , Social Adjustment , Social Interaction
8.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Article in English | MEDLINE | ID: mdl-33595143

ABSTRACT

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Human Development/physiology , Neuroimaging , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Young Adult
9.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Article in English | MEDLINE | ID: mdl-33044802

ABSTRACT

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Subject(s)
Biological Variation, Population/physiology , Brain/anatomy & histology , Brain/diagnostic imaging , Human Development/physiology , Magnetic Resonance Imaging , Neuroimaging , Sex Characteristics , Brain Cortical Thickness , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Female , Humans , Male
10.
Hum Brain Mapp ; 43(1): 255-277, 2022 01.
Article in English | MEDLINE | ID: mdl-32596977

ABSTRACT

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.


Subject(s)
Anxiety Disorders/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Data Interpretation, Statistical , Meta-Analysis as Topic , Multicenter Studies as Topic , Neuroimaging , Humans , Multicenter Studies as Topic/methods , Multicenter Studies as Topic/standards , Neuroimaging/methods , Neuroimaging/standards
11.
Hum Brain Mapp ; 43(1): 83-112, 2022 01.
Article in English | MEDLINE | ID: mdl-32618421

ABSTRACT

Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.


Subject(s)
Anxiety Disorders , Limbic System , Neuroimaging , Prefrontal Cortex , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/genetics , Anxiety Disorders/pathology , Anxiety Disorders/physiopathology , Humans , Limbic System/diagnostic imaging , Limbic System/pathology , Limbic System/physiopathology , Multicenter Studies as Topic , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology
12.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Article in English | MEDLINE | ID: mdl-33570244

ABSTRACT

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Subject(s)
Amygdala/anatomy & histology , Corpus Striatum/anatomy & histology , Hippocampus/anatomy & histology , Human Development/physiology , Neuroimaging , Thalamus/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Amygdala/diagnostic imaging , Child , Child, Preschool , Corpus Striatum/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Male , Middle Aged , Thalamus/diagnostic imaging , Young Adult
13.
World J Biol Psychiatry ; 23(4): 264-277, 2022.
Article in English | MEDLINE | ID: mdl-34378488

ABSTRACT

OBJECTIVES: Social dysfunction is one of the most common signs of major neuropsychiatric disorders. The Default Mode Network (DMN) is crucially implicated in both psychopathology and social dysfunction, although the transdiagnostic properties of social dysfunction remains unknown. As part of the pan-European PRISM (Psychiatric Ratings using Intermediate Stratified Markers) project, we explored cross-disorder impact of social dysfunction on DMN connectivity. METHODS: We studied DMN intrinsic functional connectivity in relation to social dysfunction by applying Independent Component Analysis and Dual Regression on resting-state fMRI data, among schizophrenia (SZ; N = 48), Alzheimer disease (AD; N = 47) patients and healthy controls (HC; N = 55). Social dysfunction was operationalised via the Social Functioning Scale (SFS) and De Jong-Gierveld Loneliness Scale (LON). RESULTS: Both SFS and LON were independently associated with diminished DMN connectional integrity within rostromedial prefrontal DMN subterritories (pcorrected range = 0.02-0.04). The combined effect of these indicators (Mean.SFS + LON) on diminished DMN connectivity was even more pronounced (both spatially and statistically), independent of diagnostic status, and not confounded by key clinical or sociodemographic effects, comprising large sections of rostromedial and dorsomedial prefrontal cortex (pcorrected=0.01). CONCLUSIONS: These findings pinpoint DMN connectional alterations as putative transdiagnostic endophenotypes for social dysfunction and could aid personalised care initiatives grounded in social behaviour.


Subject(s)
Alzheimer Disease , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Neural Pathways/diagnostic imaging , Default Mode Network , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Nerve Net/diagnostic imaging
14.
Article in English | MEDLINE | ID: mdl-34718073

ABSTRACT

BACKGROUND: Emotion recognition constitutes a pivotal process of social cognition. It involves decoding social cues (e.g., facial expressions) to maximise social adjustment. Current theoretical models posit the relationship between social withdrawal factors (social disengagement, lack of social interactions and loneliness) and emotion decoding. OBJECTIVE: To investigate the role of social withdrawal in patients with schizophrenia (SZ) or probable Alzheimer's disease (AD), neuropsychiatric conditions associated with social dysfunction. METHODS: A sample of 156 participants was recruited: schizophrenia patients (SZ; n = 53), Alzheimer's disease patients (AD; n = 46), and two age-matched control groups (SZc, n = 29; ADc, n = 28). All participants provided self-report measures of loneliness and social functioning, and completed a facial emotion detection task. RESULTS: Neuropsychiatric patients (both groups) showed poorer performance in detecting both positive and negative emotions compared with their healthy counterparts (p < .01). Social withdrawal was associated with higher accuracy in negative emotion detection, across all groups. Additionally, neuropsychiatric patients with higher social withdrawal showed lower positive emotion misclassification. CONCLUSIONS: Our findings help to detail the similarities and differences in social function and facial emotion recognition in two disorders rarely studied in parallel, AD and SZ. Transdiagnostic patterns in these results suggest that social withdrawal is associated with heightened sensitivity to negative emotion expressions, potentially reflecting hypervigilance to social threat. Across the neuropsychiatric groups specifically, this hypervigilance associated with social withdrawal extended to positive emotion expressions, an emotional-cognitive bias that may impact social functioning in people with severe mental illness.


Subject(s)
Alzheimer Disease/physiopathology , Facial Recognition , Schizophrenia/physiopathology , Social Isolation , Adult , Anxiety , Cues , Female , Humans , Male , Self Report , Surveys and Questionnaires
15.
Transl Psychiatry ; 11(1): 502, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599145

ABSTRACT

The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5-90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology.


Subject(s)
Anxiety Disorders , Brain , Adult , Anxiety , Anxiety Disorders/diagnostic imaging , Brain/diagnostic imaging , Child , Female , Humans , Magnetic Resonance Imaging , Male
16.
Transl Psychiatry ; 11(1): 402, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290222

ABSTRACT

Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18-57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen's d = 0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 years, Cohen's d = 0.27, 95% CI -0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (-2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.


Subject(s)
Depressive Disorder, Major , Adult , Aging , Anxiety Disorders , Brain/diagnostic imaging , Depression , Humans , Netherlands/epidemiology
17.
Mol Psychiatry ; 26(9): 5124-5139, 2021 09.
Article in English | MEDLINE | ID: mdl-32424236

ABSTRACT

Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted "brain age" and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen's d = 0.14, 95% CI: 0.08-0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates.


Subject(s)
Depressive Disorder, Major , Adolescent , Adult , Aged , Aging , Brain/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
18.
Article in English | MEDLINE | ID: mdl-32735912

ABSTRACT

BACKGROUND: Reflecting evidence on Callous-Unemotional (CU) traits (e.g., lack of empathy and guilt, shallow affect), the DSM-5 added a categorical CU-based specifier for Conduct Disorder (CD), labeled 'with Limited Prosocial Emotions' (LPE). Theory and prior work suggest that CD youths with and without LPE will likely differ in neural processing of negative socioemotional content. This proposition, however, is mainly derived from studies employing related, yet distinct, operationalizations of CU traits (e.g., dimensional measure/median split/top quartile), thus precluding direct examination of LPE-specific neurocognitive deficits. METHODS: Employing a DSM-5 informed LPE proxy, neural processing of recognizing and resonating negative socioemotional content (angry and fearful faces) was therefore examined here among CD offenders with LPE (CD/LPE+; N = 19), relative to CD offenders without LPE (CD/LPE-; N = 31) and healthy controls (HC; N = 31). RESULTS: Relative to HC and CD/LPE- youths and according to a linearly increasing trend (CD/LPE- < HC < CD/LPE+), CD/LPE+ youths exhibited hyperactivity within dorsolateral, dorsomedial, and ventromedial prefrontal regions during both emotion recognition and resonance. During emotion resonance, CD/LPE+ youths additionally showed increased activity within the posterior cingulate and precuneal cortices in comparison to HC and CD/LPE- youths, which again followed a linearly increasing trend (CD/LPE- < HC < CD/LPE+). These effects moreover seemed specific to the LPE specifier, when compared to a commonly employed method for CU-based grouping in CD (i.e., median split on CU scores). CONCLUSIONS: These data cautiously suggest that CD/LPE+ youths may exhibit an over-reliance on cortical neurocognitive systems when explicitly processing negative socioemotional information, which could have adverse downstream effects on relevant socioemotional functions. The findings thus seem to provide novel, yet preliminary, clues on the neurocognitive profile of CD/LPE+, and additionally highlight the potential scientific utility of the LPE specifier.


Subject(s)
Brain/diagnostic imaging , Conduct Disorder/diagnostic imaging , Criminals , Emotions/physiology , Adolescent , Conduct Disorder/psychology , Empathy/physiology , Fear/psychology , Humans , Magnetic Resonance Imaging , Male
19.
Neurosci Biobehav Rev ; 111: 199-228, 2020 04.
Article in English | MEDLINE | ID: mdl-32001274

ABSTRACT

Sadness is typically characterized by raised inner eyebrows, lowered corners of the mouth, reduced walking speed, and slumped posture. Ancient subcortical circuitry provides a neuroanatomical foundation, extending from dorsal periaqueductal grey to subgenual anterior cingulate, the latter of which is now a treatment target in disorders of sadness. Electrophysiological studies further emphasize a role for reduced left relative to right frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal cortex as an antidepressant target. Neuroimaging studies - including meta-analyses - indicate that sadness is associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control over medullary cardioacceleratory circuits. Reduced cardiac control may - in part - contribute to epidemiological reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion theory and psychological constructionism may be considered as complementary, working at different levels of the phylogenetic hierarchy.


Subject(s)
Autonomic Nervous System , Cerebral Cortex , Epigenesis, Genetic/physiology , Interoception , Mood Disorders , Nerve Net , Neurosciences , Psychological Theory , Sadness/physiology , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Humans , Interoception/physiology , Mood Disorders/genetics , Mood Disorders/metabolism , Mood Disorders/physiopathology , Nerve Net/metabolism , Nerve Net/physiopathology
20.
Sci Rep ; 10(1): 194, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31932627

ABSTRACT

Though social functioning is often hampered in Major Depressive Disorder (MDD), we lack a complete and integrated understanding of the underlying neurobiology. Connectional disturbances in the brain's Default Mode Network (DMN) might be an associated factor, as they could relate to suboptimal social processing. DMN connectional integrity, however, has not been explicitly studied in relation to social dysfunctioning in MDD patients. Applying Independent Component Analysis and Dual Regression on resting-state fMRI data, we explored DMN intrinsic functional connectivity in relation to social dysfunctioning (i.e. composite of loneliness, social disability, small social network) among 74 MDD patients (66.2% female, Mean age = 36.9, SD = 11.9). Categorical analyses examined whether DMN connectivity differs between high and low social dysfunctioning MDD groups, dimensional analyses studied linear associations between social dysfunction and DMN connectivity across MDD patients. Threshold-free cluster enhancement (TFCE) with family-wise error (FWE) correction was used for statistical thresholding and multiple comparisons correction (P < 0.05). The analyses cautiously linked greater social dysfunctioning among MDD patients to diminished DMN connectivity, specifically within the rostromedial prefrontal cortex and posterior superior frontal gyrus. These preliminary findings pinpoint DMN connectional alterations as potentially germane to social dysfunction in MDD, and may as such improve our understanding of the underlying neurobiology.


Subject(s)
Brain/physiopathology , Depressive Disorder, Major/physiopathology , Functional Neuroimaging/methods , Neural Pathways , Social Behavior Disorders/epidemiology , Adult , Female , Humans , Longitudinal Studies , Male , Netherlands/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...