Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 19(2): 197-202, 1999 Dec.
Article in English | MEDLINE | ID: mdl-30754748

ABSTRACT

An acidic endochitinase gene (pcht28) isolated from Lycopersicon chilense was introduced into tomato (L. esculentum) through Agrobacterium-mediated transformation, using the CAMV 35S promoter. Transgenic plants demonstrated a high level of constitutive expression of pcht28 and chitinase enzyme activity. Kanamycin-resistant R1 plants (resulting from self-pollination of transgenic plants) as well as R2 plants were evaluated for their tolerance to Verticillium dahliae (race 1 and 2 for R1 plants and race 2 for R2 plants) in the greenhouse. They demonstrated a significantly (P<0.05) higher level of tolerance to the fungi compared to the nontransgenic plants, as measured by foliar disease symptoms, vascular discoloration, and vascular discoloration index. The transgenic plants produced in this study represent a source of genetic resistance to Verticillium dahliae.

2.
Plant Cell Rep ; 15(1-2): 102-5, 1995 Jan.
Article in English | MEDLINE | ID: mdl-24185664

ABSTRACT

Leaf disc transformation-regeneration technique was applied to the drought tolerant wild relative of cultivated tomato,Lycopersicon chilense, using a plasmid construct which contained the coding sequences of neomycin phosphotransferase (NPTII) and chloramphenicol acetyltransferase (CAT) genes. The two genotypes used, LA2747 and LA1930, showed a distinct difference in their aptitude to transformation; a higher success rate was obtained for the first genotype in every stage of the process. Shoots were formed on the regeneration medium containing 100 µg/ml kanamycin through direct or indirect organogenesis. Root formation became only possible when the concentration of kanamycin was reduced to 50 µg/ml. Expression of chloramphenicol acetyltransferase gene was observed in all of the kanamycin-screened plants after they matured; the activity of the gene was absent or low in some of the young plants. The presence of the CAT gene in transgenic plants was further confirmed by Southern blot analysis. Although transgenic plants grew to maturity, they did not produce fruit, owing to the self incompatibility ofL. chilense.

SELECTION OF CITATIONS
SEARCH DETAIL
...