Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurol Disord Drug Targets ; 22(10): 1417-1428, 2023.
Article in English | MEDLINE | ID: mdl-36443981

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality today, which will surpass many infectious diseases in the coming years/decades. Posttraumatic epilepsy (PTE) is one of the most common debilitating consequences of TBI. PTE is a secondary, acquired epilepsy that causes recurrent, spontaneous seizures more than a week after TBI. The extent of head injury in individuals who develop PTE is unknown; however, trauma is thought to account for 20% of symptomatic epilepsy worldwide. Understanding the mechanisms of epilepsy following TBI is crucial for the discovery of new anticonvulsant drugs for the treatment of PTE, as well as for improving the quality of life of patients with PTE. OBJECTIVE: This review article explains the rationale for the usage of a chemical model to access new treatments for post-traumatic epilepsy. RESULTS: There are multiple methods to control and manage PTE. The essential and available remedy for the management of epilepsy is the use of antiepileptic drugs. Antiepileptic drugs (AEDs) decrease the frequency of seizures without affecting the disease's causality. Antiepileptic drugs are administrated for the prevention and treatment of PTE; however, 30% of epilepsy patients are drug-resistant, and AED side effects are significant in PTE patients. There are different types of animal models, such as the liquid percussion model, intracortical ferric chloride injection, and cortical subincision model, to study PTE and neurophysiological mechanisms underlying the development of epilepsy after head injury. However, these animal models do not easily mimic the pathological events occurring in epilepsy. Therefore, animal models of PTE are an inappropriate tool for screening new and putatively effective AEDs. Chemical kindling is the most common animal model used to study epilepsy. There is a strong similarity between the kindling model and different types of human epilepsy. CONCLUSION: Today, researchers use experimental animal models to evaluate new anticonvulsant drugs. The chemical kindling models, such as pentylenetetrazol, bicuculline, and picrotoxin-induced seizures, are important experimental models to analyze the impact of putative antiepileptic drugs.


Subject(s)
Brain Injuries, Traumatic , Craniocerebral Trauma , Epilepsy, Generalized , Epilepsy, Post-Traumatic , Epilepsy , Animals , Humans , Epilepsy, Post-Traumatic/drug therapy , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/diagnosis , Anticonvulsants/therapeutic use , Quality of Life , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Seizures/drug therapy , Epilepsy/drug therapy , Epilepsy/etiology , Craniocerebral Trauma/complications , Craniocerebral Trauma/drug therapy , Disease Models, Animal , Epilepsy, Generalized/drug therapy
2.
Curr Drug Targets ; 22(3): 356-367, 2021.
Article in English | MEDLINE | ID: mdl-33023444

ABSTRACT

Epilepsy is one of the most common disorders of the central nervous system. Although epilepsy is common worldwide, approximately 80% of epileptic patients live in the developing countries or those with low-middle income. Up until the second decade of the 20th century, epilepsy was treated mostly by traditional remedies. Today, antiepileptic drugs are used as a general treatment instead to prevent and control epileptic seizures. However, patient access to these drugs is hindered due to the healthcare systems of their countries and a number of other reasons, such as cultural, socio-demographic, and financial poverty. In addition, approximately 30-40%of epileptic patients suffer from refractory epilepsy, additionally, AEDs have adverse side-effects that can lead to treatment failure or reduce the patient's quality of life. Despite recent advances in the treatment of epilepsy, there is still a need for improving medical treatment with a particular focus on efficacy, safety, and accessibility. Since herbal medicines have been used for many centuries around the world for treating epilepsy, it is, therefore, plausible that a rigorous study on herbal medicine and phytochemical components within plants of various species and origin may lead to the discovery of novel AEDs. Nowadays, many medicinal plants used in different cultures and regions of the world have been identified. Most phytochemical components of these plants have been identified and, in some cases, their targets located. Therefore, it is possible that new, effective, and accessible anticonvulsants drugs can be obtained from a medicinal plant.


Subject(s)
Epilepsy , Plant Extracts , Plants, Medicinal , Anticonvulsants/adverse effects , Epilepsy/drug therapy , Humans , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...