Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
J Orthop Res ; 35(9): 2067-2074, 2017 09.
Article in English | MEDLINE | ID: mdl-27891670

ABSTRACT

Vertebral compression fractures are caused by many factors including trauma and osteoporosis. Osteoporosis induced fractures are a result of loss in bone mass and quality that weaken the vertebral body. Vertebroplasty and kyphoplasty, involving cement augmentation of fractured vertebrae, show promise in restoring vertebral mechanical properties. Some complications however, are reported due to the performance characteristics of commercially available bone cements. In this study, the biomechanical performance characteristics of two novel composite (PMMA-CaP) bone cements were studied using an anatomically accurate human cadaveric vertebroplasty model. The study involves mechanical testing on two functional cadaveric spinal unit (2FSU) segments which include monotonic compression and cyclical fatigue tests, treatment by direct cement injection, and microscopic visualization of sectioned vertebrae. The 2FSU segments were fractured, treated, and mechanically tested to investigate the stability provided by two novel bone cements; using readily available commercial acrylic cement as a control. Segment height and stiffness were tracked during the study to establish biomechanical performance. The 2FSU segments were successfully stabilized with all three cement groups. Stiffness values were restored to initial levels following fatigue loading. Cement interdigitation was observed with all cement groups. This study demonstrates efficient reinforcement of the fractured vertebrae through stiffness restoration. The pre-mixed composite cements were comparable to the commercial cement in their performance and interdigitative ability, thus holding promise for future clinical use. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2067-2074, 2017.


Subject(s)
Bone Cements , Vertebroplasty , Aged, 80 and over , Calcium Phosphates , Female , Humans , Male , Materials Testing , Middle Aged , Polymethyl Methacrylate
2.
ACS Biomater Sci Eng ; 3(10): 2267-2277, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-33445286

ABSTRACT

Acrylic bone cements, although successful in the field of orthopedics, suffer from a lack of bioactivity, not truly integrating with surrounding bone. Bioactive fixation is expected to enhance cement performance because of the natural interlocking and bonding with bone, which can improve the augmentative potential of the material in applications such as vertebroplasty (VP). In a recent study, two composite cements (PMMA-hydroxyapatite and PMMA-brushite) showed promising results demonstrating no deterioration in rheological and mechanical properties after CaP filler addition. In this study, the dynamic properties of the cements were investigated in vitro and in vivo. The hypothesis was that these composite cements will provide osseointegration around the implanted cement and increase new bone formation, thus decreasing the risk of bone structural failure. The effects of CaP elution were thus analyzed in vitro using these cements. Mass-loss, pore formation, and mechanical changes were tracked after cement immersion in Hank's salt solution. PMMA-brushite was the only cement with a significant mass loss; however it showed low bulk porosity. Surface porosity increases were observed in both composite cements. Mechanical properties were maintained after cement immersion. In vitro culture studies tested preosteoblast cell viability and differentiation on the cement surface. Cell viability was demonstrated with MTT assay and confirmed on the cement surface. ALP assays showed no inhibition of osteoblast differentiation on the cement surface. In vivo experiments were performed using a rat tibiae model to demonstrate bone ingrowth around the implanted cements. Critical size defects were created and then filled with the cements. The animal studies showed no loss in mechanical strength after implantation and increased bone ingrowth around the composite cements. In summary, the composite cements provided bioactivity without sacrificing mechanical strength.

3.
J Appl Oral Sci ; 24(1): 52-60, 2016.
Article in English | MEDLINE | ID: mdl-27008257

ABSTRACT

OBJECTIVE: The corrosion behavior of zirconia in acidulated phosphate fluoride (APF) representing acidic environments and fluoride treatments was studied. MATERIAL AND METHODS: Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM). Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD) to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS) was used to detect ion dissolution of material into the immersion media. RESULTS: Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate) onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. CONCLUSION: Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study.


Subject(s)
Acidulated Phosphate Fluoride/chemistry , Zirconium/chemistry , Ceramics/chemistry , Corrosion , Dental Implants , Dielectric Spectroscopy/methods , Immersion , Materials Testing , Microscopy, Electron, Scanning , Surface Properties/drug effects , Time Factors , X-Ray Diffraction/methods
4.
J. appl. oral sci ; 24(1): 52-60, Jan.-Feb. 2016. graf
Article in English | LILACS, BBO - Dentistry | ID: lil-777363

ABSTRACT

ABSTRACT Objective The corrosion behavior of zirconia in acidulated phosphate fluoride (APF) representing acidic environments and fluoride treatments was studied. Material and Methods Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM). Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD) to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS) was used to detect ion dissolution of material into the immersion media. Results Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate) onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. Conclusion Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study.


Subject(s)
Zirconium/chemistry , Acidulated Phosphate Fluoride/chemistry , Surface Properties/drug effects , Time Factors , X-Ray Diffraction/methods , Materials Testing , Microscopy, Electron, Scanning , Dental Implants , Ceramics/chemistry , Corrosion , Dielectric Spectroscopy/methods , Immersion
5.
J Mech Behav Biomed Mater ; 50: 290-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26177392

ABSTRACT

There is a growing body of the literature on new cement formulations that address the shortcomings of PMMA bone cements approved for use in vertebroplasty (VP) and balloon kyphoplasty (BKP). The present study is a contribution to these efforts by further characterization of two pre-mixed CaP filler-reinforced PMMA bone cements intended for VP; namely, PMMA-HA and PMMA-brushite cements. Each of these cements showed acceptable levels of various properties determined in porcine vertebral bodies. These properties included radiographic contrast, maximum exotherm temperature setting time, cement extravasation, stiffness change after fatigue loading, change of VB height after fracture following fatigue loading, and interdigitation. Each property value was comparable to or better than that for a PMMA bone cement approved for use in BKP. Thus, the results for the composite bone cements are promising.


Subject(s)
Bone Cements/chemistry , Polymethyl Methacrylate/chemistry , Vertebroplasty/methods , Animals , Bone Cements/pharmacology , Mechanical Phenomena , Polymethyl Methacrylate/pharmacology , Porosity , Swine
6.
J Biomater Appl ; 29(5): 688-98, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25085810

ABSTRACT

Calcium phosphate fillers have been shown to increase cement osteoconductivity, but have caused drawbacks in cement properties. Hydroxyapatite and Brushite were introduced in an acrylic two-solution cement at varying concentrations. Novel composite bone cements were developed and characterized using rheology, injectability, and mechanical tests. It was hypothesized that the ample swelling time allowed by the premixed two-solution cement would enable thorough dispersion of the additives in the solutions, resulting in no detrimental effects after polymerization. The addition of Hydroxyapatite and Brushite both caused an increase in cement viscosity; however, these cements exhibited high shear-thinning, which facilitated injection. In gel point studies, the composite cements showed no detectable change in gel point time compared to an all-acrylic control cement. Hydroxyapatite and Brushite composite cements were observed to have high mechanical strengths even at high loads of calcium phosphate fillers. These cements showed an average compressive strength of 85 MPa and flexural strength of 65 MPa. A calcium phosphate-containing cement exhibiting a combination of high viscosity, pseudoplasticity and high mechanical strength can provide the essential bioactivity factor for osseointegration without sacrificing load-bearing capability.


Subject(s)
Bone Cements/chemistry , Durapatite/chemistry , Osseointegration/physiology , Polymethyl Methacrylate/chemistry , Spine/chemistry , Bone Substitutes , Calcium/chemistry , Calcium Phosphates/chemistry , Compressive Strength , Materials Testing/methods , Particle Size , Polymers/chemistry , Pressure , Rheology , Spinal Fractures , Stress, Mechanical , Vertebroplasty , Viscosity , Weight-Bearing
7.
Materials (Basel) ; 7(9): 6779-6795, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-28788212

ABSTRACT

Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...