Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 5(1)2016 Jan 05.
Article in English | MEDLINE | ID: mdl-28231100

ABSTRACT

Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high-fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects.

2.
Plant Foods Hum Nutr ; 67(1): 88-93, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22350500

ABSTRACT

The objectives of this study were to: (i) define the optimum concentration of triticale bran (TB) that can be incorporated in yogurt, (ii) evaluate the prebiotic effects of TB on microbial viability, pH and total titratable acidity (TTA) in yogurt across 28 days of cold storage, and (iii) measure the oxygen radical absorbance capacity (ORAC) of water-extractable polysaccharides (WEP) in TB. Lactobacillus bulgaricus and Streptococcus thermophilus were used as starter cultures. Lactobacillus acidophilus and Bifidobacterium lactis were used as probiotics. A concentration of 4% TB in yogurt was determined to be the maximum amount that could be added without causing synersis. By day 7, the number of bacteria greatly increased in yogurt samples containing TB and maintained higher viable bacteria counts at the end of the cold storage period, in comparison to controls (P ≤ 0.05). Confirming this data was the lower pH levels and higher TTA values of TB yogurt samples exhibited throughout 28 days (P ≤ 0.05). Polysaccharide extracts of TB exhibited strong antioxidant activity with an ORAC value of 33.86 ± 2.30 µmol trolox equivalents (TE)/g of bran. Results of this study suggest that TB may serve as a new prebiotic and antioxidant source for functional foods and nutraceutical applications.


Subject(s)
Antioxidants/metabolism , Edible Grain/microbiology , Lactobacillus/growth & development , Streptococcus thermophilus/growth & development , Yogurt/microbiology , Bifidobacterium/growth & development , Cold Temperature , Dairy Products , Dietary Carbohydrates , Dietary Fiber/microbiology , Fermentation , Food Microbiology , Functional Food , Hydrogen-Ion Concentration , Lactobacillus acidophilus/growth & development , Microbial Viability , Oxidation-Reduction , Prebiotics , Probiotics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...