Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Magn Reson Chem ; 50(11): 739-48, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23001915

ABSTRACT

(31)P nuclear magnetic resonance (NMR) spectroscopy was used to detect and quantify simultaneously a large number of phenolic compounds and the two triterpenic acids, ursolic acid and oleanolic acid, extracted from two oregano species Origanum onites and Origanum vulgare ssp. Hirtum using two different organic solvents ethanol and ethyl acetate. This analytical method is based on the derivatization of the hydroxyl and carboxyl groups of these compounds with the phosphorous reagent 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxa phospholane and the identification of the phosphitylated compounds on the basis of the (31)P chemical shifts. Unambiguous assignment of the (31)P NMR chemical shifts of the dihydroxy- and polyhydroxy-phenols in oregano species as well as those of the triterpenic acids was achieved upon comparison with the chemical shifts of model compounds assigned by using two-dimensional NMR techniques. Furthermore, the integration of the appropriate signals of the hydroxyl derivatives in the corresponding (31)P NMR spectra and the use of the phosphitylated cyclohexanol as an internal standard allowed the quantification of these compounds. The validity of this technique for quantitative measurements was thoroughly examined.


Subject(s)
Oleanolic Acid/analysis , Origanum/chemistry , Phenols/analysis , Triterpenes/analysis , Greece , Magnetic Resonance Spectroscopy , Oleanolic Acid/chemistry , Phenols/chemistry , Phosphorus Isotopes , Triterpenes/chemistry , Ursolic Acid
2.
Food Chem ; 135(4): 2561-8, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22980843

ABSTRACT

Two hundred twenty-one extra virgin olive oils (EVOO) were extracted from four olive mono-cultivars (Koroneiki, Tsounati, Adramitini, and Throubolia) originated from four divisions of Greece (Peloponnesus, Crete, Zakynthos, and Lesvos) and collected in five harvesting periods (2002-2006 and 2007-2008). All samples were chemically analysed by means of (1)H and (31)P NMR spectroscopy and characterised according to their content in fatty acids, phenolic compounds, diacylglycerols, total free sterols, free acidity, and iodine number. The influence of cultivars on the compositional data of the EVOO samples according to harvest year and geographical origin was examined by means of the forward stepwise canonical discriminant analysis (CDA) and classification binary trees (CBT). The CDA, when the a priori grouping was in accordance with harvest, was high (94%), whereas the classification in terms of groups formed by inclusions of geographical origin was reduced to 85%. Inclusion of both the harvesting year and geographical origin in the CDA analysis resulted in a high classification (90%) for the EVOO samples grouped into the four cultivars. The variables that most satisfactorily classified the Greek olive oils were the phenolics p-coumaric acid, pinoresinol, 1-acetoxypinoresinol, syringaresinol, luteolin, apigenin, and the hydrolysis products of oleuropein expressed collectively by the concentration of total hydroxytyrosol. Amongst the fatty acids, linoleic acid was the predictor with the highest discriminatory power. Finally, the phylogenetic significance of the olive oil compounds as determined by NMR was investigated by estimating their support to monophyly of cultivars.


Subject(s)
Biometric Identification/methods , Magnetic Resonance Spectroscopy/methods , Olea/chemistry , Plant Oils/chemistry , Greece , Olea/classification , Olea/growth & development , Olive Oil , Time Factors
3.
Talanta ; 80(5): 2165-71, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20152467

ABSTRACT

NMR spectroscopy was employed for the detection of adulteration of refined olive oil with refined hazelnut oil. Fatty acids and iodine number were determined by (1)H NMR, whereas (31)P NMR was used for the quantification of minor compounds including phenolic compounds, diacylglycerols, sterols, and free fatty acids (free acidity). Classification of the refined oils based on their fatty acids content and the concentration of their minor compounds was achieved by using the forward stepwise canonical discriminant analysis (CDA) and the classification binary trees (CBTs). Both methods provided good discrimination between the refined hazelnut and olive oils. Different admixtures of refined olive oils with refined hazelnut oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent application of CDA to the NMR data allowed the detection of the presence of refined hazelnut oils in refined olive oils at percentages higher than 5%. Application of the non-linear classification method of the binary trees offered better possibilities of measuring adulteration of the refined olive oils at a lower limit of detection than that obtained by the CDA method.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Plant Oils/analysis , Diglycerides/analysis , Fatty Acids/analysis , Food Contamination , Multivariate Analysis , Olive Oil , Sterols/analysis
4.
J Agric Food Chem ; 56(9): 3200-7, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18422335

ABSTRACT

This work deals with the prediction of the geographical origin of monovarietal virgin olive oil (cv. Koroneiki) samples from three regions of southern Greece, namely, Peloponnesus, Crete, and Zakynthos, and collected in five harvesting years (2001-2006). All samples were chemically analyzed by means of 1H and 31P NMR spectroscopy and characterized according to their content in fatty acids, phenolics, diacylglycerols, total free sterols, free acidity, and iodine number. Biostatistical analysis showed that the fruiting pattern of the olive tree complicates the geographical separation of oil samples and the selection of significant chemical compounds. In this way the inclusion of the harvesting year improved the classification of samples, but increased the dimensionality of the data. Discriminant analysis showed that the geographical prediction at the level of three regions is very high (87%) and becomes (74%) when we pass to the thinner level of six sites (Chania, Sitia, and Heraklion in Crete; Lakonia and Messinia in Peloponnesus; Zakynthos). The use of classification and binary trees made possible the construction of a geographical prediction algorithm for unknown samples in a self-improvement fashion, which can be readily extended to other varieties and areas.


Subject(s)
Magnetic Resonance Spectroscopy , Plant Oils/classification , Diglycerides/analysis , Discriminant Analysis , Fatty Acids/analysis , Greece , Olive Oil , Phenols/analysis , Plant Oils/chemistry
5.
J Agric Food Chem ; 55(3): 577-84, 2007 Feb 07.
Article in English | MEDLINE | ID: mdl-17263444

ABSTRACT

The present study was designed to assess the agreement between analytical methodologies based on 1H and 31P NMR spectroscopy and conventional analytical methods (titration, gas chromatography, and high performance liquid chromatography) for measuring certain minor and major constituents (free acidity, fatty acids, iodine value, and phenolic compounds) of olive oil. The standard deviations of the NMR method were comparable to those of the conventional methods, except perhaps those of the total hydroxytyrosol and total tyrosol. Linear regression analyses showed strong correlations between NMR and conventional methods for free acidity, total hydroxytyrosol, total tyrosol, total diacylglycerols, (+)-pinoresinol, (+)-1-acetoxypinoresinol, and apigenin; good correlations for linoleic acid, free hydroxytyrosol, and free tyrosol; and weak correlations for oleic acid, linolenic acid, saturated fatty acids, and luteolin. Furthermore, a method comparison study was conducted and the agreement between NMR and conventional methods was evaluated by using the Bland and Altman statistical analysis. The distribution of the data points in the bias plot showed that 96.4% and 100% of the measurements of free acidity and iodine value, respectively, were within the limits of agreement of the two methods. For the remaining constituents of olive oil, the percentage of measurements, located within the limits of agreement, ranged from 94% to 98.5%.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Plant Oils/chemistry , Chromatography, Gas , Chromatography, High Pressure Liquid , Fatty Acids/analysis , Hydrogen , Hydrogen-Ion Concentration , Linear Models , Olive Oil , Phenols/analysis , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL