Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674951

ABSTRACT

Polymeric materials, renowned for their lightweight attributes and design adaptability, play a pivotal role in augmenting fuel efficiency and cost-effectiveness in railway vehicle development. The tailored formulation of compounds, specifically designed for additive manufacturing, holds significant promise in expanding the use of these materials. This study centers on poly(lactic acid) (PLA), a natural-based biodegradable polymeric material incorporating diverse halogen-free flame retardants (FRs). Our investigation scrutinizes the printability and fire performance of these formulations, aligning with the European railway standard EN 45545-2. The findings underscore that FR in the condensed phase, including ammonium polyphosphate (APP), expandable graphite (EG), and intumescent systems, exhibit superior fire performance. Notably, FR-inducing hydrolytic degradation, such as aluminum hydroxide (ATH) or EG, reduces polymer molecular weight, significantly impacting PLA's mechanical performance. Achieving a delicate balance between fire resistance and mechanical properties, formulations with APP as the flame retardant emerge as optimal. This research contributes to understanding the fire performance and printability of 3D-printed PLA compounds, offering vital insights for the rail industry's adoption of polymeric materials.

2.
J Chromatogr A ; 1652: 462363, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34261024

ABSTRACT

Asymmetric-Flow Field-Flow Fractionation is a very powerful technique for measuring the molar mass distribution of polymers with complex microstructures. The analysis of some samples such as self-crosslinkable latexes requires to directly dissolve the polymer dispersion in the eluent (THF) without drying it, and this work studies the effect of the presence of this water in those analysis. Taking a polystyrene latex as model system, it was observed that the measured molar mass and radius of gyration increased as the concentration of water in the sample increased. This was an effect of a decrease in the compatibility between the solvent mixture (THF and water) and the polymer, which formed aggregates, and could be predicted calculating the polymer-solvent interaction parameter. When the study was extended to poly(methyl methacrylate), poly(n-butyl acrylate) and poly(vinyl acetate) the same general trend was observed, however, the impact of the water was less significant as the hydrophilicity of the polymer increased. Most importantly, if the samples with the highest water content were first dissolved in THF and afterwards dried using MgSO4 the measured molar mass and radius of gyration values were the same as for the reference sample (dried in the oven), providing a method to analyze samples that cannot be dried into a film and remove the negative effect of the water at the same time.


Subject(s)
Chemistry Techniques, Analytical , Fractionation, Field Flow , Polymers , Chemistry Techniques, Analytical/methods , Molecular Weight , Polymers/metabolism , Solvents , Water
3.
Neurooncol Adv ; 2(1): vdaa010, 2020.
Article in English | MEDLINE | ID: mdl-32642678

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Circulating biomarkers may assist in the processes of differential diagnosis and response assessment. GBM cells release extracellular vesicles containing a subset of proteins and nucleic acids. We previously demonstrated that exosomes isolated from the serum of GBM patients had an increased expression of RNU6-1 compared to healthy subjects. In this exploratory study, we investigated the role of this small noncoding RNA as a diagnostic biomarker for GBM versus other brain lesions with some potential radiological similarities. METHODS: We analyzed the expression of RNU6-1 in circulating exosomes of GBM patients (n = 18), healthy controls (n = 30), and patients with subacute stroke (n = 30), acute/subacute hemorrhage (n = 30), acute demyelinating lesions (n = 18), brain metastases (n = 21), and primary central nervous system lymphoma (PCNSL; n = 12) using digital droplet PCR. RESULTS: Expression of RNU6-1 was significantly higher in GBM patients than in healthy controls (P = .002). RNU6-1 levels were also significantly higher in exosomes from GBM patients than from patients with non-neoplastic lesions (stroke [P = .05], hemorrhage [P = .01], demyelinating lesions [P = .019]) and PCNSL (P = .004). In contrast, no significant differences were found between patients with GBM and brain metastases (P = .573). Receiver operator characteristic curve analyses supported the role of this biomarker in differentiating GBM from subacute stroke, acute/subacute hemorrhage, acute demyelinating lesions, and PCNSL (P < .05), but again not from brain metastases (P = .575). CONCLUSIONS: Our data suggest that the expression of RNU6-1 in circulating exosomes could be useful for the differentiation of GBM from non-neoplastic brain lesions and PCNSL, but not from brain metastases.

4.
Biomacromolecules ; 21(11): 4522-4531, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32441934

ABSTRACT

Growing environmental concerns are enforcing sustainable recycling processes for glass substrates, especially bottles, where a fast cleaning and minimization of the use of solvents is desired. In this process, labels and adhesives are mostly removed by the addition of harsh reagents, alkaline solutions, or high temperature, increasing economic costs and harming the environment. Herein, high performance and biobased waterborne pressure-sensitive adhesives with fast removability in water have been developed using small percentages of isosorbide (derived from glucose)-based methacrylate monomers. Formulations containing 2-octyl acrylate and isobornyl methacrylate and small amounts (1 wt %) of these monomers not only yield stronger adhesive fibrils, but also promote a removability in water 6× faster than that of nonisosorbide-based counterparts. This waterborne isosorbide containing PSAs represents an alternative to current PSA formulations toward more sustainable glass recycling and reusing processes.


Subject(s)
Adhesives , Isosorbide , Glass , Methacrylates , Water
5.
ACS Macro Lett ; 5(9): 1019-1022, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-35614638

ABSTRACT

Despite significant efforts, the design of alkoxyamines for polymerization of methacrylic monomers in a well-controlled fashion with good retention of the active chain ends remains a challenge. Herein, the facile synthesis of several alkoxyamines, which are capable of achieving this long sought-after goal, is reported. Controlled homopolymerization of methyl methacrylate is achieved as determined by a linear increase in molecular weight with conversion and first-order rate plots for various alkoxyamine concentrations. The versatility of the alkoxyamines is further exemplified by the ability to control the homopolymerization of styrene and by synthesis of a block copolymer of a second methacrylate in an efficient chain extension process.

6.
Neuro Oncol ; 16(4): 520-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24435880

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA. The aim of this hypothesis-generating study was to assess the diagnostic potential of miRNAs found in microvesicles isolated from the serum of GBM patients. METHODS: To control disease heterogeneity, we used patients with newly diagnosed GBM. In the discovery stage, PCR-based TaqMan Low Density Arrays followed by individual quantitative reverse transcriptase polymerase chain reaction were used to test the differences in the miRNA expression levels of serum microvesicles among 25 GBM patients and healthy controls paired by age and sex. The detected noncoding RNAs were then validated in another 50 GBM patients. RESULTS: We found that the expression levels of 1 small noncoding RNA (RNU6-1) and 2 microRNAs (miR-320 and miR-574-3p) were significantly associated with a GBM diagnosis. In addition, RNU6-1 was consistently an independent predictor of a GBM diagnosis. CONCLUSIONS: Altogether our results uncovered a small noncoding RNA signature in microvesicles isolated from GBM patient serum that could be used as a fast and reliable differential diagnostic biomarker.


Subject(s)
Biomarkers, Tumor/genetics , Exosomes/genetics , Glioblastoma/diagnosis , MicroRNAs/genetics , Adolescent , Adult , Aged , Biomarkers, Tumor/blood , Case-Control Studies , Cohort Studies , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Glioblastoma/blood , Glioblastoma/genetics , Humans , Male , MicroRNAs/blood , Middle Aged , Neoplasm Staging , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
7.
ACS Appl Mater Interfaces ; 2(2): 443-51, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20356190

ABSTRACT

The synthesis and resulting temperature-responsive properties of semicrystalline waterborne pressure-sensitive adhesives (PSAs) were investigated. A crystalline polymer fraction was produced in situ within waterborne particles by miniemulsion polymerization of non-branched long chain acrylates. The degree of crystallinity was controlled by copolymerization with a short chain acrylate. The polymerization strategy determined the polymer architecture and film structure, which then influenced the adhesion properties. The high sensitivity of the adhesion strength of these PSAs to temperature, in the range around the crystal melting point, opens up the possibility of designing temperature-responsive adhesives. With the right distribution and concentration of crystalline polymers, a simultaneous increase in both the peel strength and the shear resistance was obtained, which is a combination that is often not found when optimizing adhesive properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...