Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8996, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637235

ABSTRACT

Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior-posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.


Subject(s)
Athletic Injuries , Brain Concussion , Virtual Reality , Athletes , Biomarkers , Brain Concussion/diagnosis , Humans
2.
Front Bioeng Biotechnol ; 9: 635661, 2021.
Article in English | MEDLINE | ID: mdl-33869153

ABSTRACT

Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (I MS ). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for I MS ). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...