Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
APL Bioeng ; 8(2): 026102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633836

ABSTRACT

The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive measurements even if, in the latest years, invasive microelectromechanical systems (MEMS) sensors have emerged as a valuable approach for precise and continuous monitoring of cardiac activity. The main challenges in designing cardiac MEMS sensors are represented by miniaturization, biocompatibility, and long-term stability. Here, we present a MEMS piezoresistive cardiac sensor capable of continuous monitoring of LV activity over time following epicardial implantation with a pericardial patch graft in adult minipigs. In acute and chronic scenarios, the sensor was able to compute heart rate with a root mean square error lower than 2 BPM. Early after up to 1 month of implantation, the device was able to record the heart activity during the most important phases of the cardiac cycle (systole and diastole peaks). The sensor signal waveform, in addition, closely reflected the typical waveforms of pressure signal obtained via intraventricular catheters, offering a safer alternative to heart catheterization. Furthermore, histological analysis of the LV implantation site following sensor retrieval revealed no evidence of myocardial fibrosis. Our results suggest that the epicardial LV implantation of an MEMS sensor is a suitable and reliable approach for direct continuous monitoring of cardiac activity. This work envisions the use of this sensor as a cardiac sensing device in closed-loop applications for patients undergoing heart surgery.

2.
Article in English | MEDLINE | ID: mdl-38082815

ABSTRACT

Vagus nerve stimulation (VNS) is an FDA-approved technique for the neuromodulation of the autonomic nervous system. There are many therapeutic applications where VNS could be used as a therapy, such as cardiovascular diseases, epilepsy, depression, and inflammatory conditions. Cardiovascular applications are particularly relevant, since cardiovascular diseases are the top causes of death worldwide. VNS clinical trials have been performed in the last 15 years for the treatment of heart failure (HF), achieving controversial results. Typically VNS is applied with a cuff electrode placed around the nerve, in an open-loop or cardiac synchronized design. The effectiveness of this approach is hindered by the multifunctional nature of the VN, which is involved in a variety of homeostatic controls. When a high current is applied, adverse effects arise from the stimulation of undesired fibers. An alternative strategy is represented by intraneural stimulation, which can guarantee higher selectivity. Moreover, closed-loop modalities allow the delivery of electrical current inside the nerves only if needed, with a reduced risk of untargeted nerve activation and lower energy consumption. Here we propose a closed-loop intraneural stimulation of the right cervical VN in a clinically relevant animal model. The intraneural was designed according to the internal structure of the VN. A threshold-based closed-loop algorithm was developed using HR as a control variable to produce a chronotropic effect.Clinical Relevance-This work analyzes the closed-loop intraneural VNS for the treatment of cardiovascular disorders, and supports the possibility of developing fully implantable devices with a high degree of selectivity in stimulation and prolonged lifespan.


Subject(s)
Cardiovascular Diseases , Heart Failure , Animals , Heart/physiology , Vagus Nerve/physiology , Heart Failure/therapy , Autonomic Nervous System
3.
Article in English | MEDLINE | ID: mdl-37917519

ABSTRACT

The neural stimulation of the vagus nerve is able to modulate various functions of the parasympathetic response in different organs. The stimulation of the vagus nerve is a promising approach to treating inflammatory diseases, obesity, diabetes, heart failure, and hypertension. The complexity of the vagus nerve requires highly selective stimulation, allowing the modulation of target-specific organs without side effects. Here, we address this issue by adapting a neural stimulator and developing an intraneural electrode for the particular modulation of the vagus nerve. The neurostimulator parameters such as amplitude, pulse width, and pulse shape were modulated. Single-, and multi-channel stimulation was performed at different amplitudes. For the first time, a polyimide thin-film neural electrode was designed for the specific stimulation of the vagus nerve. In vivo experiments were performed in the adult minipig to validate to elicit electrically evoked action potentials and to modulate physiological functions, validating the spatial selectivity of intraneural stimulation. Electrochemical tests of the electrode and the neurostimulator showed that the stimulation hardware was working correctly. Stimulating the porcine vagus nerve resulted in spatially selective modulation of the vagus nerve. ECAP belonging to alpha and beta fibers could be distinguished during single- and multi-channel stimulation. We have shown that the here presented system is able to activate the vagus nerve and can therefore modulate the heart rate, diastolic pressure, and systolic pressure. The here presented system may be used to restore the cardiac loop after denervation by implementing biomimetic stimulation patterns. Presented methods may be used to develop intraneural electrodes adapted for various applications.


Subject(s)
Heart Failure , Vagus Nerve , Animals , Swine , Swine, Miniature , Vagus Nerve/physiology , Heart , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...