Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Breast Cancer Res Treat ; 172(3): 637-646, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30159786

ABSTRACT

PURPOSE: Knowledge about the germline mutational spectrum among Brazilian with hereditary breast and ovarian cancer (HBOC) is limited. Only five studies have performed comprehensive BRCA sequencing, corresponding to 1041 individuals among a Brazilian population of over 207 million people. Herein we aimed to determine the clinical and molecular characteristics of Brazilian patients who underwent oncogenetic counseling and genetic testing of a panel of high-risk and moderate-risk genes from 2009 to 2017. METHODS: Massively parallel sequencing was applied in 157 individuals (132 breast cancer-affected and 25 breast cancer-unaffected individuals) selected according NCCN criteria for hereditary breast cancer. Analysis of mutation segregation in family members was performed by capillary bidirectional sequencing, clinical response after treament and survival analysis was estimated by Kaplan-Meier. RESULTS: Nineteen germline variants were identified,15 pathogenic and 4 VUS (Variants of Uncertain Significance) in 27 individuals (27/157; 17% P < 0.0001) distributed among 7 genes. Sixty-eight percent of patients (13/19) harbor mutation in BRCA genes and 32% (6/19) in moderate risk genes. This is the first study reporting ATR deleterious germline mutation in association with hereditary breast cancer. Cancer-affected patients with moderate- risk mutation present a more aggressive phenotype, with bilateral cancer (25% vs. 13%, P = 0.0305), high-grade tumors (79.2% vs. 46.3%, P = 0.0001) and triple-negative (50% vs. 22.4%, P < 0.0001). However, no difference in the 5 years overall survival was observed between BRCA and moderate risk groups. CONCLUSIONS: This work highlights the benefits of large-scale sequencing for oncogenetic counseling and extends our understanding about the genetics of hereditary breast cancer in the multi-ethnic Brazilian population.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Ataxia Telangiectasia Mutated Proteins/genetics , Brazil , Breast Neoplasms/etiology , Breast Neoplasms/mortality , Female , Genes, BRCA1 , High-Throughput Nucleotide Sequencing , Humans , Risk
2.
Hered Cancer Clin Pract ; 13(1): 2, 2015.
Article in English | MEDLINE | ID: mdl-25632310

ABSTRACT

BACKGROUND: Male breast cancer (MBC) is an uncommon disease that has been the focus of limited research. It is estimated that approximately 10% of men with breast cancer have a genetic predisposition, with BRCA2 being the most prevalent genetic mutation. Here we describe the case of MBC in a 64-year-old man who presented on physical examination a nodule in his left breast and declared to have an extensive family history of cancer. METHODS AND RESULTS: The patient was firstly diagnosed with an invasive ductal carcinoma (IDC) with histological grade III, nuclear grade 3, pT4N2Mx and positive for hormonal receptors and HER2. Exome sequencing was performed by massive parallel sequencing which had detected a novel BRCA2 germline mutation that is a large genomic deletion of 3,492 nucleotides including BRCA2 exon 14, and this deletion is out of frame and is predicted to lead to a stop codon in exon 15 at codon 2,496. CONCLUSION: Large rearrangements in BRCA1 and BRCA2 occur in a small percentage (<1%) of patients tested for hereditary breast and ovarian cancer. This is the first report of the mutation del3492 in BRCA2 exon 14, which leads to a truncated protein and therefore is clinically relevant. Mutation segregation analysis should be further done in the Brazilian population. Herein we highlight the importance of next-generation sequencing in the detection of large genomic deletions.

3.
Toxicol In Vitro ; 28(3): 381-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24296152

ABSTRACT

Titanium is one of the most used materials in implants and changes in its surface can modify the cellular functional response to better implant fixation. An argon plasma treatment generates a surface with improved mechanical proprieties without modifying its chemical composition. Oxidative stress induced by biomaterials is considered one of the major causes of implant failure and studies in this field are fundamental to evaluate the biocompatibility of a new material. Therefore, in this work, induction of oxidative stress by titanium surfaces subjected to plasma treatment (PTTS) was evaluated. The viability of CHO-k1 cells was higher on PTTS discs. Cells grown on titanium surfaces are subjected to intracellular oxidative stress. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular survival. These were associated with improved cellular antioxidant response in Plasma Treated Titanium Surface (PTTS). Furthermore, a decrease in protein and DNA oxidative damage was observed on cells grown on the roughed surface when compared to the smooth one. In conclusion, our data suggest that the treatment of titanium with argon plasma may improve its biocompatible, thus improving its performance as implants or as a scaffold in tissue engineering.


Subject(s)
Antioxidants/metabolism , Argon/chemistry , Biocompatible Materials/chemistry , Titanium/chemistry , Animals , CHO Cells , Cell Survival , Cricetinae , Cricetulus , DNA Damage , Oxidative Stress , Prostheses and Implants
4.
Genet. mol. biol ; 30(1,suppl): 290-295, 2007. tab, ilus
Article in English | LILACS | ID: lil-450447

ABSTRACT

In this work, we predict a structural model for the RecA protein from M. synoviae (MsRecA) by theoretical homology modeling and evaluate the occurrence of polymorphisms in this protein within several isolates of this species. The structural model suggested for MsRecA conserves the main domains present in MtRecA and EcRecA. The L1 and L2 regions showed six and three amino acid substitutions, respectively, which apparently do not affect the conformation and function of MsRecA. The C-terminal domain is shorter than that found in EcRecA and MtRecA, which may increase its capacity to bind dsDNA and displace SSB, compensating the absence of recombination initiation enzymes. The MS59 isolate RecA sequence showed one polymorphism which does not affect its functions since these belong to the same physical-chemical group.

SELECTION OF CITATIONS
SEARCH DETAIL
...