Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(25): 29984-29995, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34129320

ABSTRACT

The development of innovative materials for bone tissue engineering to promote bone regeneration while avoiding fibrous tissue infiltration is of paramount importance. Here, we combined the known osteopromotive properties of bioactive glasses (BaGs) with the biodegradability, biocompatibility, and ease to shape/handle of poly-l-co-d,l-lactic acid (PLDLA) into a single biphasic material. The aim of this work was to unravel the role of the surface chemistry and topography of BaG surfaces on the stability of a PLDLA honeycomb membrane, in dry and wet conditions. The PLDLA honeycomb membrane was deposited using the breath figure method (BFM) on the surface of untreated BaG discs (S53P4 and 13-93B20), silanized with 3-aminopropyltriethoxysilane (APTES) or conditioned (immersed for 24 h in TRIS buffer solution). The PLDLA membranes deposited onto the BaG discs, regardless of their composition or surface treatments, exhibited a honeycomb-like structure with pore diameter ranging from 1 to 5 µm. The presence of positively charged amine groups (APTES grafting) or the precipitation of a CaP layer (conditioned) significantly improved the membrane resistance to shear as well as its stability upon immersion in the TRIS buffer solution. The obtained results demonstrated that the careful control of the substrate surface chemistry enabled the deposition of a stable honeycomb membrane at their surface. This constitutes a first step toward the development of new biphasic materials enabling osteostimulation (BaG) while preventing migration of fibrous tissue inside the bone defect (honeycomb polymer membrane).


Subject(s)
Bone Substitutes/chemistry , Glass/chemistry , Polyesters/chemistry , Tissue Engineering/methods , Materials Testing , Membranes, Artificial
2.
Mater Sci Eng C Mater Biol Appl ; 107: 110340, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761244

ABSTRACT

Bioactive glass (BAG)/Poly (Lactic Acid) (PLA) composites have great potential for bone tissue engineering. The interest in these materials is to obtain a scaffold with tailorable properties bringing together the advantages of the composites' constituents such as the biodegradability, bioactivity and osteoinduction. The materials studied are PLA/13-93 and PLA/13-93B20 (20% of SiO2 is replaced with B2O3 in the 13-93 composition). To characterize them, they were dissolved in TRIS buffer and Simulated Body Fluid (SBF) in vitro. Over the 10 weeks of immersion in TRIS, the ion release from the composites was constant. Following immersion in SBF for 2 weeks, the hydroxyapatite (HA) layer was found to precipitate at the composites surface. By adding Boron, both these reactions were accelerated, as the borosilicate glass dissolves faster than pure silicate glass alone. Polymer degradation was studied and showed that during immersion, the pure PLA rods maintained their molecular weight whereby the composites decreased with time, but despite this the mechanical properties remained stable for at least 10 weeks. Their ability to induce osteogenic differentiation of myoblastic cells was also demonstrated with cell experiments showing that C2C12 cells were able to proliferate and spread on the composites. The Myosin Heavy Chain and Osteopontin were tracked by immunostaining the cells and showed a suppression of the myosin signal and the presence of osteopontin, when seeded onto the composites. This proves osteoinduction occurred. In studying the mineralization of the cells, it was found that BAG presence conditions the synthesizing of mineral matter in the cells. The results show that these composites have a potential for bone tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Boron Compounds/chemistry , Osteogenesis/drug effects , Polyesters/chemistry , Silicates/chemistry , Animals , Body Fluids , Boron/pharmacokinetics , Calcium Phosphates/chemistry , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Durapatite/chemistry , Glass/chemistry , Materials Testing , Mice , Myoblasts/cytology , Silicon Dioxide/chemistry , Tissue Engineering/methods
3.
J Mol Recognit ; 31(5): e2690, 2018 05.
Article in English | MEDLINE | ID: mdl-29205553

ABSTRACT

Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.


Subject(s)
Ascites/diagnosis , Lectins/metabolism , Ovarian Neoplasms/metabolism , Vitronectin/blood , Ascites/blood , Ascites/metabolism , Female , Glycosylation , Humans , Ovarian Neoplasms/blood , Proteomics , Sensitivity and Specificity , Vitronectin/chemistry
4.
World J Urol ; 24(1): 21-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16397814

ABSTRACT

To determine the efficacy of the consumption of cranberry juice versus placebo with regard to the presence of in vitro bacterial anti-adherence activity in the urine of healthy volunteers. Twenty healthy volunteers, 10 men and 10 women, were included. The study was a double-blind, randomized, placebo-controlled, and cross-over study. In addition to normal diet, each volunteer received at dinner a single dose of 750 ml of a total drink composed of: (1) 250 ml of the placebo and 500 ml of mineral water, or (2) 750 ml of the placebo, or (3) 250 ml of the cranberry juice and 500 ml of mineral water, or (4) 750 ml of the cranberry juice. Each volunteer took the four regimens successively in a randomly order, with a washout period of at least 6 days between every change in regimen. The first urine of the morning following cranberry or placebo consumption was collected and used to support bacterial growth. Six uropathogenic Escherichia coli strains (all expressing type 1 pili; three positive for the gene marker for P-fimbriae papC and three negative for papC), previously isolated from patients with symptomatic urinary tract infections, were grown in urine samples and tested for their ability to adhere to the T24 bladder cell line in vitro. There were no significant differences in the pH or specific gravity between the urine samples collected after cranberry or placebo consumption. We observed a dose dependent significant decrease in bacterial adherence associated with cranberry consumption. Adherence inhibition was observed independently from the presence of genes encoding type P pili and antibiotic resistance phenotypes. Cranberry juice consumption provides significant anti-adherence activity against different E. coli uropathogenic strains in the urine compared with placebo.


Subject(s)
Bacterial Adhesion/physiology , Escherichia coli Infections/prevention & control , Escherichia coli/isolation & purification , Urinary Tract Infections/therapy , Vaccinium macrocarpon , Adult , Beverages , Colony Count, Microbial , Cross-Over Studies , Double-Blind Method , Epithelial Cells/physiology , Female , Humans , Male , Reference Values , Sensitivity and Specificity , Urinalysis , Urinary Bladder/cytology , Urinary Tract Infections/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...