Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324395

ABSTRACT

Renewed scientific interest in psychedelic compounds represents one of the most promising avenues for addressing the current burden of mental health disorders. Classic psychedelics are a group of compounds that exhibit structural similarities to the naturally occurring neurotransmitter serotonin (5-HT). Acting on the 5-HT type 2A receptors (HT2ARs), psychedelics induce enduring neurophysiological changes that parallel their therapeutic psychological and behavioral effects. Recent preclinical evidence suggests that the ability of psychedelics to exert their action is determined by their ability to permeate the neuronal membrane to target a pool of intracellular 5-HT2ARs. In this computational study, we employ classical molecular dynamics simulations and umbrella sampling techniques to investigate the permeation behavior of 12 selected tryptamines and to characterize the interactions that drive the process. We aim at elucidating the impact of N-alkylation, indole ring substitution and positional modifications, and protonation on their membrane permeability. Dimethylation of the primary amine group and the introduction of a methoxy group at position 5 exhibited an increase in permeability. Moreover, there is a significant influence of positional substitutions on the indole groups, and the protonation of the molecules substantially increases the energy barrier at the center of the bilayer, making the compounds highly impermeable. All the information extracted from the trends predicted by the simulations can be applied in future drug design projects to develop psychedelics with enhanced activity.

2.
Front Psychiatry ; 14: 1183740, 2023.
Article in English | MEDLINE | ID: mdl-37377473

ABSTRACT

Psychedelic therapy has witnessed a resurgence in interest in the last decade from the scientific and medical communities with evidence now building for its safety and efficacy in treating a range of psychiatric disorders including addiction. In this review we will chart the research investigating the role of these interventions in individuals with addiction beginning with an overview of the current socioeconomic impact of addiction, treatment options, and outcomes. We will start by examining historical studies from the first psychedelic research era of the mid-late 1900s, followed by an overview of the available real-world evidence gathered from naturalistic, observational, and survey-based studies. We will then cover modern-day clinical trials of psychedelic therapies in addiction from first-in-human to phase II clinical trials. Finally, we will provide an overview of the different translational human neuropsychopharmacology techniques, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), that can be applied to foster a mechanistic understanding of therapeutic mechanisms. A more granular understanding of the treatment effects of psychedelics will facilitate the optimisation of the psychedelic therapy drug development landscape, and ultimately improve patient outcomes.

4.
Biol Psychiatry ; 93(12): 1089-1098, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36635177

ABSTRACT

BACKGROUND: The serotonin hypothesis of depression proposes that diminished serotonergic (5-HT) neurotransmission is causal in the pathophysiology of the disorder. Although the hypothesis is over 50 years old, there is no firm in vivo evidence for diminished 5-HT neurotransmission. We recently demonstrated that the 5-HT2A receptor agonist positron emission tomography (PET) radioligand [11C]Cimbi-36 is sensitive to increases in extracellular 5-HT induced by an acute d-amphetamine challenge. Here we applied [11C]Cimbi-36 PET to compare brain 5-HT release capacity in patients experiencing a major depressive episode (MDE) to that of healthy control subjects (HCs) without depression. METHODS: Seventeen antidepressant-free patients with MDE (3 female/14 male, mean age 44 ± 13 years, Hamilton Depression Rating Scale score 21 ± 4 [range 16-30]) and 20 HCs (3 female/17 male, mean age 32 ± 9 years) underwent 90-minute dynamic [11C]Cimbi-36 PET before and 3 hours after a 0.5-mg/kg oral dose of d-amphetamine. Frontal cortex (main region of interest) 5-HT2A receptor nondisplaceable binding was calculated from kinetic analysis using the multilinear analysis-1 approach with the cerebellum as the reference region. RESULTS: Following d-amphetamine administration, frontal nondisplaceable binding potential (BPND) was significantly reduced in the HC group (1.04 ± 0.31 vs. 0.87 ± 0.24, p < .001) but not in the MDE group (0.97 ± 0.25 vs. 0.92 ± 0.22, not significant). ΔBPND of the MDE group was significantly lower than that of the HC group (HC: 15% ± 14% vs. MDE: 6.5% ± 20%, p = .041). CONCLUSIONS: This first direct assessment of 5-HT release capacity in people with depression provides clear evidence for dysfunctional serotonergic neurotransmission in depression by demonstrating reduced 5-HT release capacity in patients experiencing an MDE.


Subject(s)
Depressive Disorder, Major , Serotonin , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Serotonin/metabolism , Amphetamine , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/metabolism , Kinetics , Depression , Receptor, Serotonin, 5-HT2A/metabolism , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Dextroamphetamine
5.
Front Psychiatry ; 14: 1305796, 2023.
Article in English | MEDLINE | ID: mdl-38274414

ABSTRACT

Background: Due to their potential impact on mood and wellbeing there has been increasing interest in the potential of serotonergic psychedelics such as N,N-dimethyltryptamine (DMT) in the treatment of major depressive disorder (MDD). Aim: The aim of Part A of this study was to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamic (PD) profile of escalating doses of SPL026 (DMT fumarate) in psychedelic-naïve healthy participants to determine a dose for administration to patients with MDD in the subsequent Phase 2a part of the trial (Part B: not presented in this manuscript). Methods: In the Phase 1, randomized, double-blind, placebo-controlled, parallel-group, single dose-escalation trial, psychedelic-naïve participants were randomized to placebo (n = 8) or four different escalating doses [9, 12, 17 and 21.5 mg intravenously (IV)] of SPL026 (n = 6 for each dose) together with psychological support from 2 therapy team members. PK and acute (immediately following dosing experience) psychometric measures [including mystical experience questionnaire (MEQ), ego dissolution inventory (EDI), and intensity rating visual analogue scale (IRVAS)] were determined. Additional endpoints were measured as longer-term change from baseline to days 8, 15, 30 and 90. These measures included the Warwick and Edinburgh mental wellbeing scale and Spielberger's state-trait anxiety inventory. Results: SPL026 was well tolerated, with an acceptable safety profile, with no serious adverse events. There was some evidence of a correlation between maximum plasma concentration and increased IRVAS, MEQ, and EDI scores. These trends are likely to require confirmation in a larger sample size. Using the analysis of the safety, tolerability, PD, PK results, doses of 21.5 mg SPL026 were the most likely to provide an intense, tolerated experience. Conclusion: Based on the data obtained from this part of the trial, a dose of 21.5 mg SPL026 given as a 2-phase IV infusion over 10 min (6 mg/5 min and 15.5 mg/5 min) was selected as the dose to be taken into patients in Part B (to be presented in a future manuscript).Clinical trial registration:www.clinicaltrials.gov, identifier NCT04673383; https://www.clinicaltrialsregister.eu, identifier 2020-000251-13; https://www.isrctn.com/, identifier ISRCTN63465876.

6.
Sleep ; 44(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34245290

ABSTRACT

STUDY OBJECTIVES: Determine whether in the hippocampus and the supramammillary nucleus (SuM) the same neurons are reactivated when mice are exposed 1 week apart to two periods of wakefulness (W-W), paradoxical sleep rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR). METHODS: We combined the innovative TRAP2 mice method in which neurons expressing cFos permanently express tdTomato after tamoxifen injection with cFos immunohistochemistry. RESULTS: We found out that a large number of tdTomato+ and cFos+ cells are localized in the dentate gyrus (DG) after PSR and W while CA1 and CA3 contained both types of neurons only after W. The number of cFos+ cells in the infrapyramidal but not the suprapyramidal blade of the DG was positively correlated with the amount of PS. In addition, we did not find double-labeled cells in the DG whatever the group of mice. In contrast, a high percentage of CA1 neurons were double-labeled in W-W mice. Finally, in the supramammillary nucleus, a large number of cells were double-labeled in W-W, PSR-PSR but not in W-PSR mice. CONCLUSIONS: Altogether, our results are the first to show that different neurons are activated during W and PS in the supramammillary nucleus and the hippocampus. Further, we showed for the first time that granule cells of the infrapyramidal blade of the DG are activated during PS but not during W. Further experiments are now needed to determine whether these granule cells belong to memory engrams inducing memory reactivation during PS.


Subject(s)
Disorders of Excessive Somnolence , Sleep, REM , Animals , Dentate Gyrus/physiology , Mice , Neurons/physiology , Sleep, REM/physiology , Wakefulness
7.
Biochem Pharmacol ; 191: 114514, 2021 09.
Article in English | MEDLINE | ID: mdl-33713640

ABSTRACT

Michel Jouvet proposed in 1959 that REM sleep is a paradoxical state since it was characterized by the association of a cortical activation similar to wakefulness (W) with muscle atonia. Recently, we showed using cFos as a marker of activity that cortical activation during paradoxical sleep (PS) was limited to a few limbic cortical structures in contrast to W during which all cortices were strongly activated. However, we were not able to demonstrate whether the same neurons are activated during PS and W and to rule out that the activation observed was not linked with stress induced by the flowerpot method of PS deprivation. In the present study, we answered to these two questions by combining tdTomato and cFos immunostaining in the innovative TRAP2 transgenic mice exposed one week apart to two periods of W (W-W mice), PS rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR mice). Using such method, we showed that different neurons are activated during W and PSR in the anterior cingulate (ACA) and rostral and caudal retrosplenial (rRSP and cRSP) cortices as well as the claustrum (CLA) previously shown to contain a large number of activated neurons after PSR. Further, the distribution of the neurons during PSR in the rRSP and cRSP was limited to the superficial layers while it was widespread across all layers during W. Our results clearly show at the cellular level that PS and W are two completely different states in term of neocortical activation.


Subject(s)
Claustrum/physiology , Disorders of Excessive Somnolence/physiopathology , Gyrus Cinguli/physiology , Neurons/physiology , Sleep, REM/physiology , Wakefulness/physiology , Animals , Claustrum/cytology , Disorders of Excessive Somnolence/genetics , Disorders of Excessive Somnolence/pathology , Female , Gyrus Cinguli/cytology , Male , Mice , Mice, Transgenic , Polysomnography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...