Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 19266, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33159099

ABSTRACT

The optical parameters of hydrogenated amorphous a-[Formula: see text]:H layers were measured with focused beam mapping ellipsometry for photon energies from 0.7 to 6.5 eV. The applied single-sample micro-combinatorial technique enables the preparation of a-[Formula: see text]:H with full range composition spread. Linearly variable composition profile was revealed along the 20 mm long gradient part of the sample by Rutherford backscattering spectrometry and elastic recoil detection analysis. The Cody-Lorentz approach was identified as the best method to describe the optical dispersion of the alloy. The effect of incorporated H on the optical absorption is explained by the lowering of the density of localized states in the mobility gap. It is shown that in the low-dispersion near infrared range the refractive index of the a-[Formula: see text] alloy can be comprehended as a linear combination of the optical parameters of the components. The micro-combinatorial sample preparation with mapping ellipsometry is not only suitable for the fabrication of samples with controlled lateral distribution of the concentrations, but also opens new prospects in creating databases of compounds for optical and optoelectonic applications.

2.
Article in English | MEDLINE | ID: mdl-34131513

ABSTRACT

This paper reports high-throughput, light-based, through-focus scanning optical microscopy (TSOM) for detecting industrially relevant sub-50 nm tall nanoscale contaminants. Measurement parameter optimization to maximize the TSOM signal using optical simulations made it possible to detect the nanoscale contaminants. Atomic force and scanning electron microscopies were used as reference methods for comparison.

3.
Sci Rep ; 8(1): 4782, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29556073

ABSTRACT

There has been an increasing push to derive quantitative measurements using optical microscopes. While several aspects of microscopy have been identified to enhance quantitative imaging, non-uniform angular illumination asymmetry (ANILAS) across the field-of-view is an important factor that has been largely overlooked. Non-uniform ANILAS results in loss of imaging precision and can lead to, for example, less reliability in medical diagnoses. We use ANILAS maps to demonstrate that objective lens design, illumination wavelength and location of the aperture diaphragm are significant factors that contribute to illumination aberrations. To extract the best performance from an optical microscope, the combination of all these factors must be optimized for each objective lens. This requires the capability to optimally align the aperture diaphragm in the axial direction. Such optimization enhances the quantitative imaging accuracy of optical microscopes and can benefit applications in important areas such as biotechnology, optical metrology, and nanotechnology.

4.
Carbohydr Polym ; 136: 137-45, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572339

ABSTRACT

Chitosan and bilayered--Rhodamine 6G impregnated silica-chitosan--coatings (300-3000 nm thick) were prepared and investigated as a model for controlled drug release. Properties of native, ionically (sodium triphosphate) and covalently (glutaraldehyde) cross-linked layers of chitosan in contact with aqueous phase (modeling human blood pH of ca. 7.3) were investigated. The cross-linking was confirmed by attenuated total reflection (ATR) Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS) and solid state (13)C nuclear magnetic resonance (NMR) spectroscopy. The evolution of advancing water contact angles as a function of time was measured, and from the results restricted mobility of polymer segments in the interfacial layer of cross-linked chitosan coatings were assumed. Spectroscopic ellipsometry measurements showed that covalent cross-linking leads to a lowered, while ionic cross-linking to an increased swelling degree of chitosan layers. Despite the swelling behavior both cross-linked chitosan layers showed significant retard effect on dye release from the bilayered coatings.


Subject(s)
Chitosan/chemistry , Coloring Agents/chemistry , Drug Carriers/chemistry , Rhodamines/chemistry , Silicon Dioxide/chemistry , Delayed-Action Preparations , Humans , Hydrogen-Ion Concentration , Permeability , Porosity , Water/chemistry
5.
Opt Express ; 24(5): 4812-4823, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092309

ABSTRACT

Plasmon-enhanced in situ spectroscopic ellipsometry was realized using the Kretschmann geometry. A 10-µL flow cell was designed for multi-channel measurements using a semi-cylindrical lens. Dual-channel monitoring of the layer formation of different organic structures has been demonstrated on titania nanoparticle thin films supported by gold. Complex modeling capabilities as well as a sensitivity of ~40 pg/mm2 with a time resolution of 1 s was achieved. The surface adsorption was enhanced by the titania nanoparticles due to the larger specific surface and nanoroughness, which is consistent with our previous results on titanate nanotubes.

6.
Sci Rep ; 5: 14037, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26370060

ABSTRACT

Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er(3+)-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er(3+)-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er(3+)-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er(3+)-ions without clustering, validated by the record high lifetime-density product 0.96 × 10(19) s.cm(-3). Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er(3+) concentration via different target glasses. The increased Er(3+) content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

SELECTION OF CITATIONS
SEARCH DETAIL
...