Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 78(3): 603-617, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30729265

ABSTRACT

Lake Dziani Dzaha (Mayotte Island, Indian Ocean) is a tropical thalassohaline lake which geochemical and biological conditions make it a unique aquatic ecosystem considered as a modern analogue of Precambrian environments. In the present study, we focused on the diversity of phytoplanktonic communities, which produce very high and stable biomass (mean2014-2015 = 652 ± 179 µg chlorophyll a L-1). As predicted by classical community ecology paradigms, and as observed in similar environments, a single species is expected to dominate the phytoplanktonic communities. To test this hypothesis, we sampled water column in the deepest part of the lake (18 m) during rainy and dry seasons for two consecutive years. Phytoplanktonic communities were characterized using a combination of metagenomic, microscopy-based and flow cytometry approaches, and we used statistical modeling to identify the environmental factors determining the abundance of dominant organisms. As hypothesized, the overall diversity of the phytoplanktonic communities was very low (15 OTUs), but we observed a co-dominance of two, and not only one, OTUs, viz., Arthrospira fusiformis (Cyanobacteria) and Picocystis salinarum (Chlorophyta). We observed a decrease in the abundance of these co-dominant taxa along the depth profile and identified the adverse environmental factors driving this decline. The functional traits measured on isolated strains of these two taxa (i.e., size, pigment composition, and concentration) are then compared and discussed to explain their capacity to cope with the extreme environmental conditions encountered in the aphotic, anoxic, and sulfidic layers of the water column of Lake Dziani Dzaha.


Subject(s)
Chlorophyta/growth & development , Lakes/microbiology , Phytoplankton/growth & development , Spirulina/growth & development , Biodiversity , Biomass , Chlorophyll A/metabolism , Chlorophyta/metabolism , Ecosystem , Indian Ocean , Islands , Phytoplankton/genetics , Seasons , Spirulina/metabolism
2.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Article in English | MEDLINE | ID: mdl-29878107

ABSTRACT

The saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean) is dominated by the bloom-forming cyanobacterium Arthrospira. However, the rest of the phototrophic community remains underexplored because of their minute dimension or lower biomass. To characterize the phototrophic microorganisms living in this ecosystem considered as a modern analog of Precambrian environments, several strains were isolated from the water column and stromatolites and analyzed using the polyphasic approach. Based on morphological, ultrastructural and molecular (16S rRNA gene, 18S rRNA gene, 16S-23S internal transcribed spacer (ITS) region and cpcBA-IGS locus) methods, seven filamentous cyanobacteria and the prasinophyte Picocystis salinarum were identified. Two new genera and four new cyanobacteria species belonging to the orders Oscillatoriales (Desertifilum dzianense sp. nov.) and Synechococcales (Sodalinema komarekii gen. nov., sp. nov., Sodaleptolyngbya stromatolitii gen. nov., sp. nov. and Haloleptolyngbya elongata sp. nov.) were described. This approach also allowed to identify Arthrospira fusiformis with exclusively straight trichomes instead of the spirally coiled form commonly observed in the genus. This study evidenced the importance of using the polyphasic approach to solve the complex taxonomy of cyanobacteria and to study algal assemblages from unexplored ecosystems.


Subject(s)
Cyanobacteria/classification , Lakes/microbiology , Oscillatoria/isolation & purification , Phototrophic Processes/physiology , Spirulina/isolation & purification , Synechococcus/isolation & purification , Biomass , Comoros , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Indian Ocean , Lakes/chemistry , Oscillatoria/classification , Oscillatoria/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Sequence Analysis, DNA , Spirulina/classification , Spirulina/genetics , Synechococcus/classification , Synechococcus/genetics
3.
Microb Ecol ; 75(2): 364-374, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28779296

ABSTRACT

In intertidal sediments, circadian oscillations (i.e., tidal and diel rhythms) and/or depth may affect prokaryotic activity. However, it is difficult to distinguish the effect of each single force on active community changes in these natural and complex intertidal ecosystems. Therefore, we developed a tidal mesocosm to control the tidal rhythm and test whether diel fluctuation or sediment depth influence active prokaryotes in the top 10 cm of sediment. Day- and nighttime emersions were compared as they are expected to display contrasting conditions through microphytobenthic activity in five different sediment layers. A multiple factor analysis revealed that bacterial and archaeal 16S ribosomal RNA (rRNA) transcript diversity assessed by pyrosequencing was similar between day and night emersions. Potentially active benthic Bacteria were highly diverse and influenced by chlorophyll a and phosphate concentrations. While in oxic and suboxic sediments, Thaumarchaeota Marine Group I (MGI) was the most active archaeal phylum, suggesting the importance of the nitrogen cycle in muddy sediments, in anoxic sediments, the mysterious archaeal C3 group dominated the community. This work highlighted that active prokaryotes organize themselves vertically within sediments independently of diel fluctuations suggesting adaptation to physicochemical-specific conditions associated with sediment depth.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Biodiversity , Geologic Sediments/chemistry , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Ecosystem , Phylogeny , Sequence Analysis, DNA
4.
Appl Environ Microbiol ; 67(4): 1775-82, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11282632

ABSTRACT

The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.


Subject(s)
Bacteria/chemistry , Bacteria/growth & development , Nucleic Acids/analysis , Water Microbiology , Bacteria/cytology , Colony Count, Microbial , Flow Cytometry , Fluorescent Dyes/metabolism , Leucine/metabolism , Staining and Labeling/methods , Tritium/metabolism
5.
FEMS Microbiol Ecol ; 35(2): 171-179, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11295456

ABSTRACT

The 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining method is commonly and increasingly used to detect and to enumerate actively respiring cells (CTC+ cells) in aquatic systems. However, this method remains controversial since some authors promote this technique while others pointed out several drawbacks of the method. Using flow cytometry (FCM), we showed that CTC staining kinetics vary greatly from one sample to another. Therefore, there is no universal staining protocol that can be applied to aquatic bacterial communities. Furthermore, using (3)H-leucine incorporation, it was shown that the CTC dye has a rapid toxic effect on bacterial cells by inhibiting protein synthesis, a key physiological function. The coupling of radioactive labelling with cell sorting by FCM suggested that CTC+ cells contribute to less than 60% of the whole bacterial activity determined at the community level. From these results, it is clearly demonstrated that the CTC method is not valid to detect active bacteria, i.e. cells responsible for bacterial production.

SELECTION OF CITATIONS
SEARCH DETAIL
...