Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
BMC Pediatr ; 24(1): 271, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664677

ABSTRACT

BACKGROUND: Pseudohypoparathyroidism (PHP) is caused by loss-of-function mutations at the GNAS gene (as in the PHP type 1A; PHP1A), de novo or inherited at heterozygous state, or by epigenetic alterations at the GNAS locus (as in the PHP1B). The condition of PHP refers to a heterogeneous group of disorders that share common clinical and biological features of PTH resistance. Manifestations related to resistance to other hormones are also reported in many patients with PHP, in association with the phenotypic picture of Albright hereditary osteodystrophy characterized by short stature, round facies, subcutaneous ossifications, brachydactyly, mental retardation and, in some subtypes, obesity. The purpose of our study is to report a new mutation in the GNAS gene and to describe the significant phenotypic variability of three sisters with PHP1A bearing the same mutation. CASE PRESENTATION: We describe the cases of three sisters with PHP1A bearing the same mutation but characterized by a significantly different phenotypic picture at onset and during follow-up in terms of clinical features, auxological pattern and biochemical changes. Clinical exome sequencing revealed a never before described heterozygote mutation in the GNAS gene (NM_000516.5 c.118_139 + 51del) of autosomal dominant maternal transmission in the three siblings, confirming the diagnosis of PHP1A. CONCLUSIONS: This study reported on a novel mutation of GNAS gene and highlighted the clinical heterogeneity of PHP1A characterized by wide genotype-phenotype variability. The appropriate diagnosis has crucial implications for patient care and long-term multidisciplinary follow-up.


Subject(s)
Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism/diagnosis , Chromogranins/genetics , Female , Child , Phenotype , Pedigree , Mutation , Adolescent , Child, Preschool
3.
Genes (Basel) ; 15(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38275611

ABSTRACT

Cranio-lenticulo-sutural dysplasia (CLSD, OMIM #607812) is a rare genetic condition characterized by late-closing fontanels, skeletal defects, dysmorphisms, and congenital cataracts that are caused by bi-allelic or monoallelic variants in the SEC23A gene. Autosomal recessive inheritance (AR-CLSD) has been extensively documented in several cases with homozygous or compound heterozygous variants in SEC23A, whereas autosomal dominant inheritance (AD-CLSD) involving heterozygous inherited variants has been reported just in three patients. The SEC23A gene encodes for one of the main components of a protein coat complex known as coat-protein-complex II (COPII), responsible for the generation of the envelope of the vesicles exported from the endoplasmic reticulum (ER) toward the Golgi complex (GC). AR-CLSD and AD-CLSD exhibit common features, although each form also presents distinctive and peculiar characteristics. Herein, we describe a rare case of a 10-year-old boy with a history of an anterior fontanel that closed only at the age of 9. The patient presents with short proportionate stature, low weight, and neurological impairment, including intellectual disability, global developmental delay, abnormal coordination, dystonia, and motor tics, along with dysmorphisms such as a wide anterior fontanel, hypertelorism, frontal bossing, broad nose, high-arched palate, and micrognathia. Trio clinical exome was performed, and a de novo heterozygous missense variant in SEC23A (p.Arg716Cys) was identified. This is the first reported case of CLSD caused by a de novo heterozygous missense variant in SEC23A presenting specific neurological manifestations never described before. For the first time, we have conducted a comprehensive phenotype-genotype correlation using data from our patient and the eight most well-documented cases in the literature. Our work has allowed us to identify the main specific and characteristic signs of both forms of CLSD (AR-CLSD, AD CLSD), offering valuable insights that can guide physicians in the diagnostic process. Notably, detailed descriptions of neurological features such as intellectual disability, global developmental delay, and motor impairment have not been documented before. Furthermore, our literature overview is crucial in the current landscape of CLSD due to the absence of guidelines for the clinical diagnosis and proper follow-up of these patients, especially during childhood.


Subject(s)
Intellectual Disability , Vesicular Transport Proteins , Male , Humans , Child , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Mutation, Missense , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism
4.
Front Pediatr ; 12: 1319885, 2024.
Article in English | MEDLINE | ID: mdl-38283630

ABSTRACT

Congenital erythrocytosis recognizes heterogeneous genetic basis and despite the use of NGS technologies, more than 50% of cases are still classified as idiopathic. Herein, we describe the case of a 3-year-old boy with a rare metabolic disorder due to SLC30A10 bi-allelic mutations and characterized by hypermanganesemia, congenital erythrocytosis and neurodegeneration, also known as hypermanganesemia with dystonia 1 (HMNDYT1). The patient was treated with iron supplementation and chelation therapy with CaNa2EDTA, resulting in a significative reduction of blood manganese levels and erythrocytosis indexes. Although it couldn't be excluded that the patient's developmental impairment was part of the phenotypic spectrum of the disease, after three months from starting treatment no characteristic extrapyramidal sign was detectable. Our findings suggest the importance of assessing serum manganese levels in patients with unexplained polycythemia and increased liver enzymes. Moreover, we highlight the importance of extended genetic testing as a powerful diagnostic tool to uncover rare genetic forms of congenital erythrocytosis. In the described patient, identifying the molecular cause of erythrocytosis has proven essential for proper clinical management and access to therapeutic options.

5.
J Hum Genet ; 69(1): 53-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697026

ABSTRACT

Heterozygous deleterious variants in SKI cause Shprintzen-Goldberg Syndrome, which is mainly characterized by craniofacial features, neurodevelopmental disorder and thoracic aorta dilatations/aneurysms. The encoded protein is a member of the transforming growth factor beta signaling. Paucity of reported studies exploring the SGS molecular pathogenesis hampers disease recognition and clinical interpretation of private variants. Here, the unpublished c.349G>A, p.[Gly117Ser] and the recurrent c.539C>T, p.[Thr180Met] SKI variants were studied combining in silico and in vitro approach. 3D comparative modeling and calculation of the interaction energy predicted that both variants alter the SKI tertiary protein structure and its interactions. Computational data were functionally corroborated by the demonstration of an increase of MAPK phosphorylation levels and alteration of cell cycle in cells expressing the mutant SKI. Our findings confirmed the effects of SKI variants on MAPK and opened the path to study the role of perturbations of the cell cycle in SGS.


Subject(s)
Marfan Syndrome , Molecular Dynamics Simulation , Humans , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Cell Cycle/genetics , Transforming Growth Factor beta
6.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37962958

ABSTRACT

Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.


Subject(s)
Neurodevelopmental Disorders , Spliceosomes , Humans , Spliceosomes/genetics , Gene Regulatory Networks , Neurodevelopmental Disorders/genetics , Mutation, Missense , RNA Splicing , RNA Splicing Factors/genetics , Nuclear Proteins/genetics , DNA Repair Enzymes/genetics
7.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37865086

ABSTRACT

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Subject(s)
Fanconi Anemia , Humans , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , DNA Methylation/genetics , Proteins/genetics , DNA/metabolism
9.
Front Mol Neurosci ; 16: 1228389, 2023.
Article in English | MEDLINE | ID: mdl-37692099

ABSTRACT

Phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome (PHTS) is a cancer predisposition syndrome characterized by an increased risk of developing benign and malignant tumors, caused by germline pathogenic variants of the PTEN tumour suppressor gene. PTEN gene variants often present in childhood with macrocephaly, developmental delay, and/or autism spectrum disorder while tumors and intestinal polyps are commonly detected in adults. PHTS is rarely associated with childhood brain tumors with only two reported cases of medulloblastoma (MB). We report the exceptional case of an infant carrying a germline and somatic pathogenic variant of PTEN and a germline and somatic pathogenic variant of CHEK2 who developed a MB SHH in addition to intestinal polyposis.

10.
Ital J Pediatr ; 49(1): 101, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612758

ABSTRACT

BACKGROUND: Ligneous Conjunctivitis (LC) is the most common clinical manifestation of Type I Plasminogen deficiency (T1PD; OMIM# 217090), and it is characterized by the formation of pseudomembranes (due to deposition of fibrin) on the conjunctivae leading to progressive vision loss. In past times, patients with LC were treated with surgery, topical anti-inflammatory, cytostatic agents, and systemic immunosuppressive drugs with limited results (Blood 108:3021-3026, 2006, Ophthalmology 129:955-957, 2022, Surv Ophthalmol 48:369-388, 2003, Blood 131:1301-1310, 2018). The surgery can also trigger the development of membranes, as observed in patients needing ocular prosthesis (Surv Ophthalmol 48:369-388, 2003). Treatment with topical purified plasminogen is used to prevent pseudomembranes formation (Blood 108:3021-3026, 2006, Ophthalmology 129:955-957, 2022). CASE PRESENTATION: We present the case of a sixteen-year-old girl with LC with severe left eye involvement. We reported the clinical conditions of the patient before and after the use of topical plasminogen eye drops and described the treatment schedule allowing the surgical procedure for the pseudomembranes debulking and the subsequent use of ocular prosthesis for aesthetic rehabilitation. CONCLUSIONS: The patient showed a progressive response to the topical plasminogen, with a complete absence of pseudomembrane formation at a twelve-year follow-up, despite using an ocular prosthesis.


Subject(s)
Eye, Artificial , Plasminogen , Adolescent , Female , Humans , Esthetics , Follow-Up Studies , Mutation
11.
Genet Med ; 25(10): 100927, 2023 10.
Article in English | MEDLINE | ID: mdl-37422718

ABSTRACT

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Subject(s)
Craniofacial Abnormalities , Hypospadias , Male , Humans , Hypospadias/genetics , RNA Splicing Factors/genetics , RNA Splicing , Transcription Factors/genetics , Transcription Factors/metabolism , Trans-Activators/genetics , RNA-Binding Proteins/genetics
12.
Clin Genet ; 104(5): 528-541, 2023 11.
Article in English | MEDLINE | ID: mdl-37455656

ABSTRACT

CTNNB1 [OMIM *116806] encodes ß-catenin, an integral part of the cadherin/catenin complex, which functions as effector of Wnt signaling. CTNNB1 is highly expressed in brain as well as in other tissues, including heart. Heterozygous CTNNB1 pathogenic variations are associated with a neurodevelopmental disorder characterized by spastic diplegia and visual defects (NEDSDV) [OMIM #615075], featuring psychomotor delay, intellectual disability, behavioral disturbances, movement disorders, visual defects and subtle facial and somatic features. We report on a new series of 19 NEDSDV patients (mean age 10.3 years), nine of whom bearing novel CTNNB1 variants. Notably, five patients showed congenital heart anomalies including absent pulmonary valve with intact ventricular septum, atrioventricular canal with hypoplastic aortic arch, tetralogy of Fallot, and mitral valve prolapse. We focused on the cardiac phenotype characterizing such cases and reviewed the congenital heart defects in previously reported NEDSDV patients. While congenital heart defects had occasionally been reported so far, the present findings configure a higher rate of cardiac anomalies, suggesting dedicated heart examination to NEDSDV clinical management.


Subject(s)
Heart Defects, Congenital , Intellectual Disability , Neurodevelopmental Disorders , Humans , Child , beta Catenin/genetics , Heart Defects, Congenital/diagnosis , Syndrome , Intellectual Disability/genetics
13.
Eur J Hum Genet ; 31(9): 1023-1031, 2023 09.
Article in English | MEDLINE | ID: mdl-37344571

ABSTRACT

BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).


Subject(s)
Epilepsy , Neurodegenerative Diseases , Humans , Nuclear Proteins/genetics , Epilepsy/genetics , Phenotype , Genotype , Genetic Association Studies , Neurodegenerative Diseases/genetics , Atrophy
14.
J Matern Fetal Neonatal Med ; 36(1): 2205985, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37100787

ABSTRACT

Short-rib thoracic dysplasia 3 with or without polydactyly (OMIM # 613091) represents a clinical spectrum encompassing a heterogeneous group of skeletal dysplasias associated with homozygous or compound heterozygous mutations of DYNC2H1. We describe the case of a couple with two consecutive therapeutic abortions due to a diagnosis of short-rib thoracic dysplasia mutations. In the first pregnancy, the diagnosis has been made at 21 weeks. In the second one, an accurate and early ultrasound examination allowed a diagnosis at 12 weeks. DYNC2H1 mutations were confirmed in both cases. In this report, we underline the importance of an ultrasound evaluation at the end of the first trimester of pregnancy in the detection of early signs of skeletal dysplasias. An early prenatal diagnosis of a short-rib skeletal dysplasia, such as for other severe skeletal dysplasias, is critical to offer a couple the chance of a weighted, informed, and less traumatic decision about the continuation of the pregnancy.


Subject(s)
Osteochondrodysplasias , Short Rib-Polydactyly Syndrome , Pregnancy , Female , Humans , Short Rib-Polydactyly Syndrome/diagnosis , Short Rib-Polydactyly Syndrome/genetics , Prenatal Diagnosis , Ultrasonography , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Ribs , Ultrasonography, Prenatal , Cytoplasmic Dyneins/genetics
16.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36965478

ABSTRACT

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Subject(s)
Alternative Splicing , DNA-Binding Proteins , Paraparesis, Spastic , Transcription Factors , Paraparesis, Spastic/genetics , Humans , DNA-Binding Proteins/genetics , Transcription Factors/genetics , HeLa Cells , Protein Isoforms/genetics , RNA-Seq , Male , Female , Pedigree , Alleles , Infant , Child, Preschool , Child , Adolescent , Protein Structure, Secondary , RNA, Small Nuclear/genetics
17.
Genes (Basel) ; 14(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36833411

ABSTRACT

Technological advancements in molecular genetics and cytogenetics have led to the diagnostic definition of complex or atypical clinical pictures. In this paper, a genetic analysis identifies multimorbidities, one due to either a copy number variant or a chromosome aneuploidy, and a second due to biallelic sequence variants in a gene associated with an autosomal recessive disorder. We diagnosed the simultaneous presence of these conditions, which co-occurred by chance, in three unrelated patients: a 10q11.22q11.23 microduplication and a homozygous variant, c.3470A>G (p.Tyr1157Cys), in the WDR19 gene associated with autosomal recessive ciliopathy; down syndrome and two variants, c.850G>A; p.(Gly284Arg) and c.5374G>T; p.(Glu1792*), in the LAMA2 gene associated with merosin-deficient congenital muscular dystrophy type 1A (MDC1A); and a de novo 16p11.2 microdeletion syndrome and homozygous variant, c.2828G>A (p.Arg943Gln), in the ABCA4 gene associated with Stargardt disease 1 (STGD1). The possibility of being affected by two relatively common or rare inherited genetic conditions would be suspected when signs and symptoms are incoherent with the primary diagnosis. All this could have important implications for improving genetic counseling, determining the correct prognosis, and, consequently, organizing the best long-term follow-up.


Subject(s)
Muscular Dystrophies , Substance-Related Disorders , Humans , Diagnosis, Dual (Psychiatry) , Stargardt Disease , Muscular Dystrophies/genetics , Homozygote , ATP-Binding Cassette Transporters/genetics
18.
J Med Genet ; 60(9): 885-893, 2023 09.
Article in English | MEDLINE | ID: mdl-36788019

ABSTRACT

BACKGROUND: Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS: While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS: All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION: This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Humans , Cerebellum/abnormalities , Abnormalities, Multiple/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Retina/abnormalities
19.
Cancer Control ; 30: 10732748221144930, 2023.
Article in English | MEDLINE | ID: mdl-36598023

ABSTRACT

INTRODUCTION: Plexiform neurofibromas (PN) represent the main cause of morbidity in patients affected by Neurofibromatosis Type 1 (NF1). Until recently, surgery has been the main treatment option in these patients, but it is burdened with a low efficacy rate and a high incidence of side effects as well as recurrence. In recent years, MEK inhibitors (MEKi) such as selumetinib and trametinib have shown great promise. METHODS: We retrospectively describe a single center cohort of NF1 patients affected by PN1 and treated with MEKi since 2019 to 2021. Patients recruited in the study were affected by PN that were not eligible to complete surgical excision, symptomatic or with major cosmetic deformation or functional neurological deficits. RESULTS: Most patients experienced improvement in clinical symptoms and quality of life, with reduction or stabilization of lesions. However, no complete response was achieved. The most common adverse effects involved the skin, affecting every patient. Importantly, no life-threatening adverse effects occurred. CONCLUSIONS: In our experience, MEKi treatment has been shown to be both safe and effective in improving symptomatology and quality of life.


Subject(s)
Neurofibroma, Plexiform , Neurofibromatosis 1 , Humans , Neurofibroma, Plexiform/drug therapy , Neurofibroma, Plexiform/pathology , Neurofibroma, Plexiform/surgery , Retrospective Studies , Quality of Life , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/chemically induced , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/adverse effects , Mitogen-Activated Protein Kinase Kinases/therapeutic use
20.
Eur J Hum Genet ; 31(3): 345-352, 2023 03.
Article in English | MEDLINE | ID: mdl-36564538

ABSTRACT

The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies.


Subject(s)
Autistic Disorder , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Autistic Disorder/genetics , Epilepsy/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/genetics , Phenotype , Syntaxin 1/genetics , Heterozygote
SELECTION OF CITATIONS
SEARCH DETAIL
...