Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 46(17): 6871-9, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-17658869

ABSTRACT

Many attempts to obtain single crystals appropriate for X-ray diffraction analysis of the Ln(tpp)(acac) derivatives (where Ln = Gd or Sm, tpp = tetraphenylporphyrin and acac = acetylacetonate) have failed so far. A suitable way to get structural parameters for these monoporphyrinates is to use extended X-ray absorption fine structure (EXAFS) spectroscopy. We recorded spectra of the monoporphyrins, Ln(tpp)(acac) and Gd(tpyp)(acac) (where tpyp = tetrapyridylporphyrin), and the bisporphyrin GdH(tpyp)2 in the solid state. We particularly focused our structural analysis on Gd(tpp)(acac), applying both molecular modeling and EXAFS, which allowed us to get accurate results about the local environment of the central atom. The Gd3+ ion of the complex at room temperature was found to be bonded to four monoporphyrin nitrogen atoms at an average distance R(Gd-N(av)) = 2.48 A and to three or four oxygen atoms at R(Gd-O(ac,w)) = 2.38 A from an acetylacetonato anion and a water molecule. The presence of the second water molecule in the coordination sphere was barely discernible by EXAFS analysis. Molecular modeling has provided further information about the coordination core geometry of the Gd(tpp)(acac) monoporphyrinate, including a bishydrated coordination sphere. Also, it has enabled the construction of a 3D structural model on which multiple scattering analyses were attempted. Monte Carlo simulation was used to validate the adjustments. EXAFS spectra analysis was carried out on the derivatives, displaying slight distortions in the lanthanide central-atom coordination geometry.


Subject(s)
Macromolecular Substances/chemistry , Organometallic Compounds/chemistry , Porphyrins/chemistry , Computer Simulation , Models, Molecular , Spectrum Analysis
2.
Inorg Chem ; 43(14): 4363-71, 2004 Jul 12.
Article in English | MEDLINE | ID: mdl-15236549

ABSTRACT

The synthesis and spectroscopic characterization of heterometallic porphyrinate derivatives containing rhodium-indium metal-metal bonds are reported. The investigated compounds are represented by the formula [(Porph)RhIn(Porph')], where Porph and Porph' are OEP, TPP, beta-Cl(4)TPP, beta-Cl(8)TPP, or TPyP. UV-Visible spectroscopy of the title complexes confirms the presence of a strong pi-pi interaction between the macrocycles in each derivative and denotes the effect of the nontransition metal in their optical features. For comparison purposes, a new bimetallic complex with a rhodium-thallium metal-metal bond is also presented. According to (1)H and (13)C NMR data, we were able to distinguish two major NMR regions: the endo- between the metal-metal bonded macrocycles and the exo-, which are characteristic features of porphyrinic complexes at very close proximity. X-ray absorption spectroscopy (XAS) structural characterization of Rh-In bond was performed on the [(OEP)RhIn(OEP)] complex, in the fluorescence mode, and we essentially focused on the metal-metal distance determination. Finally, the distance of 2.543(3) A was deduced from the X-ray structure of a new [(TPP)RhIn(TPyP)] derivative.

3.
Inorg Chem ; 40(24): 6088-96, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11703105

ABSTRACT

The comparative X-ray absorption spectroscopy study of gadolinium and samarium bisporphyrinate complexes represented by the formulas Gd(III)H(oep)(tpp), Gd(III)(oep)(2), Gd(III)H(tpp)(2) and Sm(III)H(oep)(tpp), Sm(III)(oep)(2), Sm(III)H(tpp)(2) is reported. The XAFS spectra are recorded on the LURE-DCI storage ring (Orsay, France) in transmission mode on the microcrystalline samples at the Gd and Sm L(3) edges. The local environment for Ln(3+) ions has been reconstructed applying one-shell and two-shell XAFS analysis procedures. The protonated and nonprotonated bisporphyrinate complexes present different XAFS features. After our analysis on the title derivatives, the gadolinium ion (at 80 K) is found to be bonded: (i) to eight nitrogen atoms at R(Gd-N) 2.50 A, for Gd(III)(oep)(2) [Debye-Waller (DW) factor 0.004 A(2)]; (ii) to seven nitrogen atoms at R(Gd-N) 2.49 A, for Gd(III)H(oep)(tpp) [DW factor 0.005 A(2)] and one nitrogen at long distance; and (iii) to six nitrogen atoms at R(Gd-N) 2.50 A [DW factor 0.006 A(2)] and two nitrogen atoms at long distance for Gd(III)H(tpp)(2). A similar coordination sphere has been detected for the corresponding Sm derivatives. So, the samarium ion (at room temperature) is bonded: (i) to eight nitrogen atoms at R(Sm-N) 2.53 A, for Sm(III)(oep)(2) [DW factor 0.006 A(2)]; (ii) to seven nitrogen atoms at R(Sm-N) 2.53 A, for Sm(III)H(oep)(tpp) [DW factor 0.006 A(2)] and one nitrogen at long distance; and (iii) to six nitrogen atoms at R(Sm-N) 2.50 A, for Sm(III)H(tpp)(2) [DW factor 0.006 A(2)] and two nitrogen atoms at long distance. As far as concerns Ln(III)(oep)(2) complexes, the increase of Ln-N distance in the series Gd(3+) < Eu(3+) < Sm(3+) reflects an increase in the ionic radii, which are in good agreement with previously published XRD data on Eu(III)(oep)(2). Moreover, the protonated Ln(III)H(oep)(tpp) and Ln(III)H(tpp)(2) complexes possess systematically shorter distances of about 0.02 A between the XAFS and XRD data. This difference is attributed to the asymmetry of the distribution concerning Ln-N distances.

SELECTION OF CITATIONS
SEARCH DETAIL
...