Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Mov Disord ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962883

ABSTRACT

BACKGROUND: Isolated rapid eye movement sleep behavioral disorder (iRBD) can precede neurodegenerative diseases. There is an urgent need for biomarkers to aid early intervention and neuroprotection. OBJECTIVE: The aim is to assess quantitative motor, cognitive, and brain magnetic resonance imaging (MRI) characteristics in iRBD patients. METHODS: Thirty-eight polysomnography-confirmed iRBD patients and 28 age- and sex-matched healthy controls underwent clinical, cognitive, and motor functional evaluations, along with brain MRI. Motor tasks included nine-hole peg test, five-times-sit-to-stand test, timed-up-and-go test, and 4-meter walking test with and without cognitive dual task. Quantitative spatiotemporal gait parameters were obtained using an optoelectronic system. Brain MRI analysis included functional connectivity (FC) of the main resting-state networks, gray matter (GM) volume using voxel-based morphometry, cortical thickness, and deep GM and brainstem volumes using FMRIB's Integrated Registration and Segmentation Tool and FreeSurfer. RESULTS: iRBD patients relative to healthy subjects exhibited a poorer performance during the nine-hole peg test and five-times-sit-to-stand test, and greater asymmetry of arm-swing amplitude and stride length variability during dual-task gait. Dual task significantly worsened the walking performance of iRBD patients more than healthy controls. iRBD patients exhibited nonmotor symptoms, and memory, abstract reasoning, and visuospatial deficits. iRBD patients exhibited decreased FC of pallidum and putamen within the basal ganglia network and occipital and temporal areas within the visuo-associative network, and a reduced volume of the supramarginal gyrus. Brain functional alterations correlated with gait changes. CONCLUSIONS: Subtle motor and nonmotor alterations were identified in iRBD patients, alongside brain structural and functional MRI changes. These findings may represent early signs of neurodegeneration and contribute to the development of predictive models for progression to parkinsonism. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881298

ABSTRACT

BACKGROUND: Stepwise functional connectivity (SFC) detects whole-brain functional couplings of a selected region of interest at increasing link-step topological distances. OBJECTIVE: This study applied SFC to test the hypothesis that stepwise architecture propagating from the disease epicenter would shape patterns of brain atrophy in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). METHODS: Thirty-six patients with PSP-RS and 44 age-matched healthy control subjects underwent brain magnetic resonance imaging on a 3-T scanner. The disease epicenter was defined as the peak of atrophy observed in an independent cohort of 13 cases with postmortem confirmation of PSP pathology and used as seed region for SFC analysis. First, we explored SFC rearrangements in patients with PSP-RS, as compared with age-matched control subjects. Subsequently, we tested SFC architecture propagating from the disease epicenter as a determinant of brain atrophy distribution. RESULTS: The disease epicenter was identified in the left midbrain tegmental region. Compared with age-matched control subjects, patients with PSP-RS showed progressively widespread decreased SFC of the midbrain with striatal and cerebellar regions through direct connections and sensorimotor cortical regions through indirect connections. A correlation was found between average link-step distance from the left midbrain in healthy subjects and brain volumes in patients with PSP-RS (r = 0.38, P < 0.001). CONCLUSIONS: This study provides comprehensive insights into the topology of functional network rearrangements in PSP-RS and demonstrates that the brain architectural topology, as described by SFC propagating from the disease epicenter, shapes the pattern of atrophic changes in PSP-RS. Our findings support the view of a network-based pathology propagation in this primary tauopathy. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Radiology ; 311(3): e232454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38916507

ABSTRACT

Background Whether connectome mapping of structural and functional connectivity across the brain could be used to predict patterns of atrophy progression in patients with mild Parkinson disease (PD) has not been well studied. Purpose To assess the structural and functional connectivity of brain regions in healthy controls and its relationship with the spread of gray matter (GM) atrophy in patients with mild PD. Materials and Methods This prospective study included participants with mild PD and controls recruited from a single center between January 2012 and December 2023. Participants with PD underwent three-dimensional T1-weighted brain MRI, and the extent of regional GM atrophy was determined at baseline and every year for 3 years. The structural and functional brain connectome was constructed using diffusion tensor imaging and resting-state functional MRI in healthy controls. Disease exposure (DE) indexes-indexes of the pathology of each brain region-were defined as a function of the structural or functional connectivity of all the connected regions in the healthy connectome and the severity of atrophy of the connected regions in participants with PD. Partial correlations were tested between structural and functional DE indexes of each GM region at 1- or 2-year follow-up and atrophy progression at 2- or 3-year follow-up. Prediction models of atrophy at 2- or 3-year follow-up were constructed using exhaustive feature selection. Results A total of 86 participants with mild PD (mean age at MRI, 60 years ± 8 [SD]; 48 male) and 60 healthy controls (mean age at MRI, 62 years ± 9; 31 female) were included. DE indexes at 1 and 2 years were correlated with atrophy at 2 and 3 years (r range, 0.22-0.33; P value range, .002-.04). Models including DE indexes predicted GM atrophy accumulation over 3 years in the right caudate nucleus and some frontal, parietal, and temporal brain regions (R2 range, 0.40-0.61; all P < .001). Conclusion The structural and functional organization of the brain connectome plays a role in atrophy progression in the early stages of PD. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Yamada in this issue.


Subject(s)
Atrophy , Brain , Connectome , Disease Progression , Magnetic Resonance Imaging , Parkinson Disease , Humans , Male , Female , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Parkinson Disease/pathology , Prospective Studies , Magnetic Resonance Imaging/methods , Middle Aged , Brain/diagnostic imaging , Brain/pathology , Aged , Connectome/methods , Gray Matter/diagnostic imaging , Gray Matter/pathology , Diffusion Tensor Imaging/methods
4.
Eur J Neurol ; : e16374, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853763

ABSTRACT

OBJECTIVE: Little is known about amyotrophic lateral sclerosis (ALS)-nonspecific cognitive deficits - most notably memory disturbance - and their biological underpinnings. We investigated the associations of the Alzheimer's disease (AD) genetic risk factor APOE and cerebrospinal fluid (CSF) biomarkers Aß and tau proteins with cognitive and motor phenotype in ALS. METHODS: APOE haplotype was determined in 281 ALS patients; for 105 of these, CSF levels of Aß42, Aß40, total tau (T-tau), and phosphorylated tau (P-tau181) were quantified by chemiluminescence enzyme immunoassay (CLEIA). The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was employed to evaluate the neuropsychological phenotype. RESULTS: APOE-E4 allele was associated with worse ECAS memory score (median, 14.0 in carriers vs. 16.0 in non-carriers) and lower CSF Aß42 (-0.8 vs. 0.1, log-transformed values) and Aß42/40 ratio (-0.1 vs. 0.3). Some 37.1% of ALS patients showed low Aß42 levels, possibly reflecting cerebral Aß deposition. While lower Aß42/40 correlated with lower memory score (ß = 0.20), Aß42 positively correlated with both ALS-specific (ß = 0.24) and ALS-nonspecific (ß = 0.24) scores. Although Aß42/40 negatively correlated with T-tau (ß = -0.29) and P-tau181 (ß = -0.33), we found an unexpected positive association of Aß42 and Aß40 with both tau proteins. Regarding motor phenotype, lower levels of Aß species were associated with lower motor neuron (LMN) signs (Aß40: ß = 0.34; Aß42: ß = 0.22). CONCLUSIONS: APOE haplotype and CSF Aß biomarkers are associated with cognitive deficits in ALS and particularly with memory impairment. This might partly reflect AD-like pathophysiological processes, but additional ALS-specific mechanisms could be involved.

5.
Eur J Neurol ; 31(8): e16316, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38716751

ABSTRACT

BACKGROUND AND PURPOSE: The use of multiple tests, including spirometry, arterial blood gas (ABG) analysis and overnight oximetry (OvOx), is highly recommended to monitor the respiratory function of patients with motor neuron disease (MND). In this study, we propose a composite score to simplify the respiratory management of MND patients and better stratify their prognosis. MATERIALS AND METHODS: We screened the clinical charts of 471 non-ventilated MND patients referred to the Neuro-rehabilitation Unit of the San Raffaele Scientific Institute of Milan (January 2001-December 2019), collecting spirometric, ABG and OvOx parameters. To evaluate the prognostic role of each measurement, univariate Cox regression for death/tracheostomy was performed, and the variables associated with survival were selected to design a scoring system. Univariate and multivariate Cox regression analyses were then carried out to evaluate the prognostic role of the score. Finally, results were replicated in an independent cohort from the Turin ALS Center. RESULTS: The study population included 450 patients. Six measurements were found to be significantly associated with survival and were selected to design a scoring system (maximum score = 8 points). Kaplan-Meier analysis showed significant stratification of survival and time to non-invasive mechanical ventilation adaptation according to score values, and multivariate analysis confirmed the independent effect of the respiratory score on survival of each cohort. CONCLUSION: Forced vital capacity, ABG and OvOx parameters provide complementary information for the respiratory management and prognosis of MND patients and the combination of these parameters into a single score might help neurologists predict prognosis and guide decisions on the timing of the implementation of different diagnostic or therapeutic approaches.


Subject(s)
Blood Gas Analysis , Motor Neuron Disease , Oximetry , Spirometry , Humans , Female , Male , Middle Aged , Aged , Blood Gas Analysis/methods , Oximetry/methods , Motor Neuron Disease/blood , Motor Neuron Disease/physiopathology , Motor Neuron Disease/diagnosis , Prognosis , Retrospective Studies , Adult
6.
J Neurol ; 271(7): 4693-4723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802624

ABSTRACT

In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/genetics , Humans , Animals
7.
J Neurol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816481

ABSTRACT

BACKGROUND AND OBJECTIVES: Epileptic seizures pose challenges in emergency departments (ED), affecting up to 10% of admitted patients. This study aimed to assess emergency electroencephalogram (EmEEG) utilization, identifying factors predicting seizure detection and its influence on clinical decisions. METHODS: A retrospective review of 1135 EmEEGs on 1017 patients at a tertiary teaching hospital between June 2022 and June 2023 was conducted. Data included demographics, medical history, EmEEG indications, neuroimaging findings, and clinical outcomes. Statistical analyses utilized Fisher's exact tests and logistic regression models. RESULTS: EmEEG detected status epilepticus-related seizures in 5.40% of cases, seizures without status epilepticus in 3.05%, and status epilepticus without discrete seizures in 3.74%. Epileptiform abnormalities were noted in 22.12% of EmEEGs. EmEEG influenced initial diagnoses (21.24%), antiseizure medication changes (20.85%), and discharge decisions (39.04%). Predictors for seizures/status epilepticus included previous neurosurgery, seizures in the ED, and cognitive/behavioral impairment (p < 0.001). EmEEG significantly altered initial diagnoses based on witnessed seizures, involuntary movements, epileptiform abnormalities, and 1-2 Hz generalized periodic discharges (p < 0.001). Changes in antiseizure medications correlated with seizure occurrence, neuroimaging results, epileptiform abnormalities, and EEG background slowing (p < 0.001). Factors influencing discharge decisions included previous neurosurgery, consciousness impairment, acute neuroimaging pathology, EEG focal slowing, and EEG background slowing (p < 0.001). DISCUSSION: The study clarifies EmEEG's role in modifying initial diagnoses, treatment approaches, and discharge decisions. The study provides insights into the nuanced impact of EmEEG in different clinical scenarios, offering valuable guidance for clinicians in selecting patients for EmEEG, particularly in conditions of limited EEG availability.

9.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792097

ABSTRACT

Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system's thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship between protein dynamics and its mechanism of action. In this research work, the HINT (Hydropathic INTeractions) LogP-based scoring function was first used to handle MD trajectories and investigate the molecular basis behind the intricate PPARγ mechanism of activation. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an emblematic example of a highly flexible protein due to the extended ω-loop delimiting the active site, and it is responsible for the receptor's ability to bind chemically different compounds. In this work, we focused on the PPARγ complex with Rosiglitazone, a common anti-diabetic compound and analyzed the molecular basis of the flexible ω-loop stabilization effect produced by the Oleic Acid co-binding. The HINT-based analysis of the produced MD trajectories allowed us to account for all of the energetic contributions involved in interconverting between conformational states and describe the intramolecular interactions between the flexible ω-loop and the helix H3 triggered by the allosteric binding mechanism.


Subject(s)
Molecular Dynamics Simulation , PPAR gamma , Protein Binding , Thermodynamics , PPAR gamma/chemistry , PPAR gamma/metabolism , Rosiglitazone/chemistry , Rosiglitazone/pharmacology , Protein Conformation , Humans
10.
Brain Sci ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790495

ABSTRACT

BACKGROUND: People with Parkinson's disease (pwPD) present alterations of spatiotemporal gait parameters that impact walking ability. While preliminary studies suggested that dual-task gait training improves spatiotemporal gait parameters, it remains unclear whether dual-task gait training specifically improves dual-task gait performance compared to single-task gait training. The aim of this review is to assess the effect of dual-task training relative to single-task gait training on specific gait parameters during dual-task tests in pwPD. METHODS: We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs), searching three electronic databases. Two reviewers independently selected RCTs, extracted data, and applied the Cochrane risk-of-bias tool for randomized trials (Version 2) and the GRADE framework for assessing the certainty of evidence. The primary outcomes were dual-task gait speed, stride length, and cadence. Secondary outcomes included dual-task costs on gait speed, balance confidence, and quality of life. RESULTS: We included 14 RCTs (548 patients). Meta-analyses showed effects favoring dual-task training over single-task training in improving dual-task gait speed (standardized mean difference [SMD] = 0.48, 95% confidence interval [CI] = 0.20-0.77; 11 studies; low certainty evidence), stride length (mean difference [MD] = 0.09 m, 95% CI = 0.04-0.14; 4 studies; very low certainty evidence), and cadence (MD = 5.45 steps/min, 95% CI = 3.59-7.31; 5 studies; very low certainty evidence). We also found a significant effect of dual-task training over single-task training on dual-task cost and quality of life, but not on balance confidence. CONCLUSIONS: Our findings support the use of dual-task training relative to single-task training to improve dual-task spatiotemporal gait parameters in pwPD. Further studies are encouraged to better define the features of dual-task training and the clinical characteristics of pwPD to identify better responders.

11.
Neurogenetics ; 25(3): 215-223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592608

ABSTRACT

We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.Based on the genotype-phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.


Subject(s)
Frontotemporal Dementia , Mutation , Neuroimaging , tau Proteins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , tau Proteins/genetics , Middle Aged , Mutation/genetics , Magnetic Resonance Imaging , Positron-Emission Tomography , Pedigree , Female , Genetic Association Studies , Brain/diagnostic imaging , Brain/pathology , Phenotype
12.
J Neurol ; 271(7): 4203-4215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597943

ABSTRACT

BACKGROUND: Semantic behavioral variant frontotemporal dementia (sbvFTD) is a neurodegenerative condition presenting with specific behavioral and semantic derangements and predominant atrophy of the right anterior temporal lobe (ATL). The objective was to evaluate clinical, neuropsychological, neuroimaging, and genetic features of an Italian sbvFTD cohort, defined according to recently proposed guidelines, compared to semantic variant primary progressive aphasia (svPPA) and behavioral variant FTD (bvFTD) patients. METHODS: Fifteen sbvFTD, sixty-three bvFTD, and twenty-five svPPA patients and forty controls were enrolled. Patients underwent clinical, cognitive evaluations, and brain MRI. Symptoms of bvFTD patients between onset and first visit were retrospectively recorded and classified as early and late. Grey matter atrophy was investigated using voxel-based morphometry. RESULTS: sbvFTD experienced early criteria-specific symptoms: world, object and person-specific semantic loss (67%), complex compulsions and rigid thought (60%). Sequentially, more behavioral symptoms emerged (apathy/inertia, loss of empathy) along with non-criteria-specific symptoms (anxiety, suspiciousness). sbvFTD showed sparing of attentive/executive functions, especially compared to bvFTD and better language functions compared to svPPA. All sbvFTD patients failed at the famous face recognition test and more than 80% failed in understanding written metaphors and humor. At MRI, sbvFTD had predominant right ATL atrophy, almost specular to svPPA. Three sbvFTD patients presented pathogenic genetic variants. CONCLUSION: We replicated the application of sbvFTD diagnostic guidelines in an independent Italian cohort, demonstrating that the presence of person-specific semantic knowledge loss and mental rigidity, along with preserved executive functions and a predominant right ATL atrophy with sparing of frontal lobes, should prompt a diagnosis of sbvFTD.


Subject(s)
Atrophy , Frontotemporal Dementia , Magnetic Resonance Imaging , Humans , Frontotemporal Dementia/pathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/physiopathology , Female , Italy , Male , Middle Aged , Aged , Atrophy/pathology , Temporal Lobe/pathology , Temporal Lobe/diagnostic imaging , Cohort Studies , Neuropsychological Tests , Aphasia, Primary Progressive/pathology , Aphasia, Primary Progressive/diagnostic imaging , Retrospective Studies , Gray Matter/pathology , Gray Matter/diagnostic imaging
13.
Brain Commun ; 6(2): fcae116, 2024.
Article in English | MEDLINE | ID: mdl-38665962

ABSTRACT

Neurogenesis decline with aging may be associated with brain atrophy. Subventricular zone neuron precursor cells possibly modulate striatal neuronal activity via the release of soluble molecules. Neurogenesis decay in the subventricular zone may result in structural alterations of brain regions connected to the caudate, particularly to its medial component. The aim of this study was to investigate how the functional organization of caudate networks relates to structural brain changes with aging. One hundred and fifty-two normal subjects were recruited: 52 young healthy adults (≤35 years old), 42 middle-aged (36 ≤ 60 years old) and 58 elderly subjects (≥60 years old). In young adults, stepwise functional connectivity was used to characterize regions that connect to the medial and lateral caudate at different levels of link-step distances. A statistical comparison between the connectivity of medial and lateral caudate in young subjects was useful to define medial and lateral caudate connected regions. Atrophy of medial and lateral caudate connected regions was estimated in young, middle-aged and elderly subjects using T1-weighted images. Results showed that middle-aged and elderly adults exhibited decreased stepwise functional connectivity at one-link step from the caudate, particularly in the frontal, parietal, temporal and occipital brain regions, compared to young subjects. Elderly individuals showed increased stepwise functional connectivity in frontal, parietal, temporal and occipital lobes compared to both young and middle-aged adults. Additionally, elderly adults displayed decreased stepwise functional connectivity compared to middle-aged subjects in specific parietal and subcortical areas. Moreover, in young adults, the medial caudate showed higher direct connectivity to the basal ganglia (left thalamus), superior, middle and inferior frontal and inferior parietal gyri (medial caudate connected region) relative to the lateral caudate. Considering the opposite contrast, lateral caudate showed stronger connectivity to the basal ganglia (right pallidum), orbitofrontal, rostral anterior cingulate and insula cortices (lateral caudate connected region) compared to medial caudate. In elderly subjects, the medial caudate connected region showed greater atrophy relative to the lateral caudate connected region. Brain regions linked to the medial caudate appear to be more vulnerable to aging than lateral caudate connected areas. The adjacency to the subventricular zone may, at least partially, explain these findings. Stepwise functional connectivity analysis can be useful to evaluate the role of the subventricular zone in network disruptions in age-related neurodegenerative disorders.

14.
Brain Commun ; 6(2): fcae113, 2024.
Article in English | MEDLINE | ID: mdl-38660629

ABSTRACT

Progressive supranuclear palsy is a neurodegenerative disease characterized by the deposition of four-repeat tau in neuronal and glial lesions in the brainstem, cerebellar, subcortical and cortical brain regions. There are varying clinical presentations of progressive supranuclear palsy with different neuroimaging signatures, presumed to be due to different topographical distributions and burden of tau. The classic Richardson syndrome presentation is considered a subcortical variant, whilst progressive supranuclear palsy with predominant speech and language impairment is considered a cortical variant, although the pathological underpinnings of these variants are unclear. In this case-control study, we aimed to determine whether patterns of regional tau pathology differed between these variants and whether tau burden correlated with neuroimaging. Thirty-three neuropathologically confirmed progressive supranuclear palsy patients with either the Richardson syndrome (n = 17) or speech/language (n = 16) variant and ante-mortem magnetic resonance imaging were included. Tau lesion burden was semi-quantitatively graded in cerebellar, brainstem, subcortical and cortical regions and combined to form neuronal and glial tau scores. Regional magnetic resonance imaging volumes were converted to Z-scores using 33 age- and sex-matched controls. Diffusion tensor imaging metrics, including fractional anisotropy and mean diffusivity, were calculated. Tau burden and neuroimaging metrics were compared between groups and correlated using linear regression models. Neuronal and glial tau burden were higher in motor and superior frontal cortices in the speech/language variant. In the subcortical and brainstem regions, only the glial tau burden differed, with a higher burden in globus pallidus, subthalamic nucleus, substantia nigra and red nucleus in Richardson's syndrome. No differences were observed in the cerebellar dentate and striatum. Greater volume loss was observed in the motor cortex in the speech/language variant and in the subthalamic nucleus, red nucleus and midbrain in Richardson's syndrome. Fractional anisotropy was lower in the midbrain and superior cerebellar peduncle in Richardson's syndrome. Mean diffusivity was greater in the superior frontal cortex in the speech/language variant and midbrain in Richardson's syndrome. Neuronal tau burden showed associations with volume loss, lower fractional anisotropy and higher mean diffusivity in the superior frontal cortex, although these findings did not survive correction for multiple comparisons. Results suggest that a shift in the distribution of tau, particularly neuronal tau, within the progressive supranuclear palsy network of regions is driving different clinical presentations in progressive supranuclear palsy. The possibility of different disease epicentres in these clinical variants has potential implications for the use of imaging biomarkers in progressive supranuclear palsy.

15.
Eur J Neurol ; 31(6): e16266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469975

ABSTRACT

BACKGROUND AND PURPOSE: Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region. METHODS: We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation. RESULTS: Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds. CONCLUSIONS: Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Magnetic Resonance Imaging , Mutation , Pulvinar , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Heterozygote , Pulvinar/diagnostic imaging , Pulvinar/physiopathology , Pulvinar/pathology
16.
J Neurol ; 271(5): 2716-2729, 2024 May.
Article in English | MEDLINE | ID: mdl-38381175

ABSTRACT

BACKGROUND AND OBJECTIVES: The AT(N) classification system stratifies patients based on biomarker profiles, including amyloid-beta deposition (A), tau pathology (T), and neurodegeneration (N). This study aims to apply the AT(N) classification to a hospital-based cohort of patients with cognitive decline and/or dementia, within and outside the Alzheimer's disease (AD) continuum, to enhance our understanding of the multidimensional aspects of AD and related disorders. Furthermore, we wish to investigate how many cases from our cohort would be eligible for the available disease modifying treatments, such as aducanemab and lecanemab. METHODS: We conducted a retrospective evaluation of 429 patients referred to the Memory Center of IRCCS San Raffaele Hospital in Milan. Patients underwent clinical/neuropsychological assessments, lumbar puncture, structural brain imaging, and positron emission tomography (FDG-PET). Patients were stratified according to AT(N) classification, group comparisons were performed and the number of eligible cases for anti-ß amyloid monoclonal antibodies was calculated. RESULTS: Sociodemographic and clinical features were similar across groups. The most represented group was A + T + N + accounting for 38% of cases, followed by A + T - N + (21%) and A - T - N + (20%). Although the clinical presentation was similar, the A + T + N + group showed more severe cognitive impairment in memory, language, attention, executive, and visuospatial functions compared to other AT(N) groups. Notably, T + patients demonstrated greater memory complaints compared to T - cases. FDG-PET outperformed MRI and CT in distinguishing A + from A - patients. Although 61% of the observed cases were A + , only 17% of them were eligible for amyloid-targeting treatments. DISCUSSION: The AT(N) classification is applicable in a real-world clinical setting. The classification system provided insights into clinical management and treatment strategies. Low cognitive performance and specific regional FDG-PET hypometabolism at diagnosis are highly suggestive for A + T + or A - T + profiles. This work provides also a realistic picture of the proportion of AD patients eligible for disease modifying treatments emphasizing the need for early detection.


Subject(s)
Amyloid beta-Peptides , Cognitive Dysfunction , Humans , Male , Female , Aged , Retrospective Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Middle Aged , Aged, 80 and over , Positron-Emission Tomography , Cohort Studies , tau Proteins/cerebrospinal fluid , Dementia/diagnostic imaging , Dementia/classification , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/classification , Biomarkers , Brain/diagnostic imaging , Neuropsychological Tests
17.
Parkinsonism Relat Disord ; 120: 106015, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325256

ABSTRACT

INTRODUCTION: Evaluating the neural correlates of sensorimotor control deficits in cervical dystonia (CD) is fundamental to plan the best treatment. This study aims to assess kinematic and resting-state functional connectivity (RS-FC) characteristics in CD patients relative to healthy controls. METHODS: Seventeen CD patients and 14 age-/sex-matched healthy controls were recruited. Electromagnetic sensors were used to evaluate dystonic pattern, mean/maximal cervical movement amplitude and joint position error with eyes open and closed, and movement quality during target reaching with the head. RS-fMRI was acquired to compare the FC of brain sensorimotor regions between patients and controls. In patients, correlations between motion analysis and FC data were assessed. RESULTS: CD patients relative to controls showed reduced mean and maximal cervical range of motion (RoM) in rotation both towards and against dystonia pattern and reduced total RoM in rotation both with eyes open and closed. They had less severe dystonia pattern with eyes open vs eyes closed. CD patients showed an altered movement quality and sensorimotor control during target reaching and a higher joint position error. Compared to controls, CD patients showed reduced FC between supplementary motor area (SMA), occipital and cerebellar areas, which correlated with lower cervical RoM in rotation both with eyes open and closed and with worse movement quality during target reaching. CONCLUSIONS: FC alterations between SMA and occipital and cerebellar areas may represent the neural basis of cervical sensorimotor control deficits in CD patients. Electromagnetic sensors and RS-fMRI might be promising tools to monitor CD and assess the efficacy of rehabilitative interventions.


Subject(s)
Dystonic Disorders , Torticollis , Humans , Torticollis/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging
18.
Lancet Neurol ; 23(3): 302-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365381

ABSTRACT

The recent commercialisation of the first disease-modifying drugs for Alzheimer's disease emphasises the need for consensus recommendations on the rational use of biomarkers to diagnose people with suspected neurocognitive disorders in memory clinics. Most available recommendations and guidelines are either disease-centred or biomarker-centred. A European multidisciplinary taskforce consisting of 22 experts from 11 European scientific societies set out to define the first patient-centred diagnostic workflow that aims to prioritise testing for available biomarkers in individuals attending memory clinics. After an extensive literature review, we used a Delphi consensus procedure to identify 11 clinical syndromes, based on clinical history and examination, neuropsychology, blood tests, structural imaging, and, in some cases, EEG. We recommend first-line and, if needed, second-line testing for biomarkers according to the patient's clinical profile and the results of previous biomarker findings. This diagnostic workflow will promote consistency in the diagnosis of neurocognitive disorders across European countries.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Europe , Biomarkers , Consensus , Societies, Scientific
19.
Neurology ; 102(3): e207993, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38165298

ABSTRACT

BACKGROUND AND OBJECTIVES: The 3 clinical presentations of primary progressive aphasia (PPA) reflect heterogenous neuropathology, which is difficult to be recognized in vivo. Resting-state (RS) EEG is promising for the investigation of brain electrical substrates in neurodegenerative conditions. In this study, we aim to explore EEG cortical sources in the characterization of the 3 variants of PPA. METHODS: This is a cross-sectional, single-center, memory center-based cohort study. Patients with PPA and healthy controls were consecutively recruited at the Neurology Unit, IRCCS San Raffaele Scientific Institute (Milan, Italy). Each participant underwent an RS 19-channel EEG. Using standardized low-resolution brain electromagnetic tomography, EEG current source densities were estimated at voxel level and compared among study groups. Using an RS functional MRI-driven model of source reconstruction, linear lagged connectivity (LLC) values within language and extra-language brain networks were obtained and analyzed among groups. RESULTS: Eighteen patients with logopenic PPA variant (lvPPA; mean age = 72.7 ± 6.6; % female = 52.4), 21 patients with nonfluent/agrammatic PPA variant (nfvPPA; mean age = 71.7 ± 8.1; % female = 66.6), and 9 patients with semantic PPA variant (svPPA; mean age = 65.0 ± 6.9; % female = 44.4) were enrolled in the study, together with 21 matched healthy controls (mean age = 69.2 ± 6.5; % female = 57.1). Patients with lvPPA showed a higher delta density than healthy controls (p < 0.01) and patients with nfvPPA (p < 0.05) and svPPA (p < 0.05). Patients with lvPPA also displayed a greater theta density over the left posterior hemisphere (p < 0.01) and lower alpha2 values (p < 0.05) over the left frontotemporal regions than controls. Patients with nfvPPA showed a diffuse greater theta density than controls (p < 0.05). LLC was altered in all patients relative to controls (p < 0.05); the alteration was greater at slow frequency bands and within language networks than extra-language networks. Patients with lvPPA also showed greater LLC values at theta band than patients with nfvPPA (p < 0.05). DISCUSSION: EEG findings in patients with PPA suggest that lvPPA-related pathology is associated with a characteristic disruption of the cortical electrical activity, which might help in the differential diagnosis from svPPA and nfvPPA. EEG connectivity was disrupted in all PPA variants, with distinct findings in disease-specific PPA groups. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that EEG analysis can distinguish PPA due to probable Alzheimer disease from PPA due to probable FTD from normal aging.


Subject(s)
Academies and Institutes , Aphasia, Primary Progressive , Humans , Female , Aged , Middle Aged , Male , Cohort Studies , Cross-Sectional Studies , Aphasia, Primary Progressive/diagnostic imaging , Electroencephalography
20.
Ann Clin Transl Neurol ; 11(3): 686-697, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234062

ABSTRACT

OBJECTIVE: The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS: Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS: When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION: Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.


Subject(s)
Amyotrophic Lateral Sclerosis , Connectome , Humans , Magnetic Resonance Imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Proteins/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...