Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 34(3): 941-950, 2019 06.
Article in English | MEDLINE | ID: mdl-30919245

ABSTRACT

The present study aimed to evaluate the effects of resveratrol on behavior and oxidative stress parameters in the brain of rats submitted to the animal model of mania induced by m-AMPH. In the first model (reversal treatment), rats received intraperitoneal (i.p.) injection of saline or m-AMPH (1 mg/kg body weight) once a day for 14 days, and from the 8th to the 14th day, they were orally treated with water or resveratrol (15 mg/kg), once a day. In the second model (maintenance treatment), rats were orally pretreated with water or resveratrol (15 mg/kg) once a day, and from the 8th to the 14th day, they received saline or m-AMPH i.p., once a day. Locomotor and exploratory activities were assessed in the open-field test. Oxidative and nitrosative damage parameters to lipid and proteins were evaluated by TBARS, 4-HNE, carbonyl, and 3-nitrotyrosine in the brain submitted to the experimental models. m-AMPH administration increased the locomotor and exploratory activities; resveratrol was not able to reverse or prevent these manic-like behaviors. Additionally, m-AMPH increased the lipid and protein oxidation and nitrosylation in the frontal cortex, hippocampus, and striatum of rats. However, resveratrol prevented and reversed the oxidative and nitrosative damage to proteins and lipids in all cerebral areas assessed. Since oxidative stress plays an important role in BD pathophysiology, supplementation of resveratrol in BD patients could be regarded as a possible adjunctive treatment with mood stabilizers.


Subject(s)
Bipolar Disorder/drug therapy , Brain/drug effects , Motor Activity/drug effects , Resveratrol/pharmacology , Animals , Antimanic Agents/pharmacology , Brain/metabolism , Central Nervous System Stimulants/pharmacology , Disease Models, Animal , Male , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Rats, Wistar
2.
Mol Cell Biochem ; 435(1-2): 207-214, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28547180

ABSTRACT

Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of L-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of L-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.


Subject(s)
Antioxidants/pharmacology , Brain/metabolism , DNA Damage , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Tyrosine , Tyrosinemias , Animals , Brain/pathology , Male , Rats , Rats, Wistar , Tyrosine/adverse effects , Tyrosine/pharmacology , Tyrosinemias/chemically induced , Tyrosinemias/drug therapy , Tyrosinemias/metabolism , Tyrosinemias/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...