Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 88(17): 8415-20, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27462727

ABSTRACT

In this technical note, we demonstrate the hyphenation of production-scale free-flow electrophoresis (FFE) and sheathless electrospray ionization mass spectrometry (ESI-MS). In contrast to previous hyphenation approaches, we used a highly conductive background electrolyte (BGE) required for production-scale FFE. We found that this kind of BGE as well as a production-scale setup leads to significant electric interference between FFE and MS. This interference prevents steady-state FFE operation. We examine this interference in detail and discuss possible solutions to this issue. We demonstrate that the straightforward grounding of the transfer line removes the influence of ESI-MS on FFE, but creates a current leak from the ESI interface, which adversely affects the ESI spray. Furthermore, we show that only the electrical disconnection of the ESI probe from the FFE-MS transfer line suppresses this undesirable current. In order to facilitate the electrical disconnection we used a low conductivity, silica-based ESI probe with withdrawn inner capillary. This approach allowed the interference-free hyphenation of production-scale FFE (using a highly conductive BGE) with ESI-MS.

2.
Anal Chem ; 86(12): 5656-60, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24836935

ABSTRACT

Small-volume continuous-flow synthesis (small-volume CFS) offers a number of benefits for use in small-scale chemical production and exploratory chemistry. Typically, small-volume CFS is followed by discontinuous purification; however, a fully continuous synthesis-purification combination is more attractive. Milli free-flow electrophoresis (mFFE) is a promising continuous-flow purification technique that is well suited for integration with small-volume CFS. The purification stability of mFFE, however, needs to be significantly improved before it can be feasible for this combination. One of the major sources of instability of mFFE is attributed to the ions produced as a result of electrolysis. These ions can form pH and conductivity gradients in mFFE, which are detrimental to separation quality. The severity of these gradients has not been thoroughly studied in mFFE. In this paper, we have experimentally demonstrated that detrimental pH gradients occur at flow rates of 8 mL/min and less, and electric field strengths of 25 V/cm and greater. To decrease the pH gradients, it is necessary to evacuate H(+) and OH(-) as soon as they are generated; this can be done by increasing local hydrodynamic flow rates. We calculated the necessary flow rate, to be applied at the electrode, which can effectively wash away both ions before they can cause a detrimental pH gradient. These optimized flow rates can be attained by designing a device that incorporates deep channels. We have confirmed the effectiveness of these channels using a prototyped device. The new design allows mFFE users to work over a wider range of flow-rate and electric-field conditions without experiencing significant changes in pH.

4.
J Sep Sci ; 34(5): 556-64, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21280214

ABSTRACT

We coin a term of milli-free flow electrophoresis (mFFE) to describe mid-scale FFE with flow rates intermediate to macro-FFE and micro-FFE (µFFE). Introduced decades ago, mFFE did not find practical applications. We revive mFFE, as we view it as a viable purification complement to continuous synthesis in capillary reactors with product flow rates of ∼5 to 2000 µL/min, too small for macro-FFE but too large for µFFE. The development of the tandem of continuous synthesis/purification will require the production and evaluation of a large number of prototypes of mFFE devices. As the first step, we developed a fast (<24 h) and economical (∼$10) method for prototyping mFFE devices using a robotic milling machine. mFFE prototypes are constructed from two machined matching poly(methyl methacrylate) (PMMA) substrates, which are bonded in 10 min using dichloromethane to provide a strong and irreversible seal. Using the developed prototyping technology, we designed and evaluated 25 prototypes of mFFE devices. By optimizing the feed rates and rotational speeds of the drills, the depth of the electrode channels, the dimensions of the entrance and exit reservoirs, the sample flow rate, and the diameter and position of the sample input, we were able to achieve indefinitely long operation of the device with cycles of alternating 15-min electrophoresis and 0.5-min regeneration (bubble removal). The test analytes, rhodamine B and fluorescein, were baseline resolved by mFFE for flow rates ranging from 10 to 600 µL/min. These results prove that our prototyping approach is suitable for the challenging task of multi-parameter optimization of mFFE devices.


Subject(s)
Electrophoresis/instrumentation , Electrophoresis/methods , Fluorescein/isolation & purification , Fluorescent Dyes/isolation & purification , Rhodamines/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...