Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17086, 2024.
Article in English | MEDLINE | ID: mdl-38500530

ABSTRACT

Circadian rhythms in honey bees are involved in various processes that impact colony survival. For example, young nurses take care of the brood constantly throughout the day and lack circadian rhythms. At the same time, foragers use the circadian clock to remember and predict food availability in subsequent days. Previous studies exploring the ontogeny of circadian rhythms of workers showed that the onset of rhythms is faster in the colony environment (~2 days) than if workers were immediately isolated after eclosion (7-9 days). However, which specific environmental factors influenced the early development of worker circadian rhythms remained unknown. We hypothesized that brood nest temperature plays a key role in the development of circadian rhythmicity in young workers. Our results show that young workers kept at brood nest-like temperatures (33-35 °C) in the laboratory develop circadian rhythms faster and in greater proportion than bees kept at lower temperatures (24-26 °C). In addition, we examined if the effect of colony temperature during the first 48 h after emergence is sufficient to increase the rate and proportion of development of circadian rhythmicity. We observed that twice as many individuals exposed to 35 °C during the first 48 h developed circadian rhythms compared to individuals kept at 25 °C, suggesting a critical developmental period where brood nest temperatures are important for the development of the circadian system. Together, our findings show that temperature, which is socially regulated inside the hive, is a key factor that influences the ontogeny of circadian rhythmicity of workers.


Subject(s)
Circadian Clocks , Social Behavior , Humans , Bees , Animals , Temperature , Circadian Rhythm
2.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370714

ABSTRACT

Gonadal steroids play a modulatory role in cocaine use disorders, and are responsible for many sex differences observed in the behavioral response to cocaine. In females, it is well established that estradiol enhances the behavioral response to cocaine. In males, we have recently shown that testosterone enhances sensitization to cocaine but its mechanism of action remains to be elucidated. The current study investigated the contribution of DHT, a non-aromatizable androgen, and of estradiol, in regulating cocaine-induced sensitization in male rats. Gonadectomized (GDX) male rats treated with estradiol sensitized to repeated cocaine administration, while GDX rats treated with DHT did not, implicating estradiol in cocaine sensitization. Furthermore, intact male rats treated with the antiestrogen ICI 182,780 did not show sensitization to repeated cocaine. This study demonstrates the pivotal role of estradiol in cocaine-induced neuroplasticity and neuroadaptations in the rodent brain.

3.
Sci Rep ; 13(1): 19861, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37963948

ABSTRACT

Lithium has been considered a potential acaricidal agent against the honey bee (Apis mellifera) parasite Varroa. It is known that lithium suppresses elevated activity and regulates circadian rhythms and light response when administered to humans as a primary therapeutic chemical for bipolar disorder and to other bipolar syndrome model organisms, given the crucial role of timing in the bee's foraging activity and the alternating sunlight vs dark colony environment bees are exposed, we explored the influence of lithium on locomotor activity (LMA) and circadian rhythm of honey bees. We conducted acute and chronic lithium administration experiments, altering light conditions and lithium doses to assess LMA and circadian rhythm changes. We fed bees one time 10 µl sucrose solution with 0, 50, 150, and 450 mM LiCl in the acute application experiment and 0, 1, 5, and 10 mmol/kg LiCl ad libitum in bee candy in the chronic application experiment. Both acute and chronic lithium treatments significantly decreased the induced LMA under constant light. Chronic lithium treatment disrupted circadian rhythmicity in constant darkness. The circadian period was lengthened by lithium treatment under constant light. We discuss the results in the context of Varroa control and lithium's effect on bipolar disorder.


Subject(s)
Bipolar Disorder , Varroidae , Humans , Bees , Animals , Lithium/pharmacology , Circadian Rhythm , Locomotion , Lithium Compounds/pharmacology
4.
Ann Entomol Soc Am ; 114(5): 596-605, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34512858

ABSTRACT

Honey bees utilize their circadian rhythms to accurately predict the time of day. This ability allows foragers to remember the specific timing of food availability and its location for several days. Previous studies have provided strong evidence toward light/dark cycles being the primary Zeitgeber for honey bees. Work in our laboratory described large individual variation in the endogenous period length of honey bee foragers from the same colony and differences in the endogenous rhythms under different constant temperatures. In this study, we further this work by examining the temperature inside the honey bee colony. By placing temperature and light data loggers at different locations inside the colony we measured temperature at various locations within the colony. We observed significant oscillations of the temperature inside the hive, that show seasonal patterns. We then simulated the observed temperature oscillations in the laboratory and found that using the temperature cycle as a Zeitgeber, foragers present large individual differences in the phase of locomotor rhythms for temperature. Moreover, foragers successfully synchronize their locomotor rhythms to these simulated temperature cycles. Advancing the cycle by six hours, resulting in changes in the phase of activity in some foragers in the assay. The results are shown in this study highlight the importance of temperature as a potential Zeitgeber in the field. Future studies will examine the possible functional and evolutionary role of the observed phase differences of circadian rhythms.

5.
Insects ; 12(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205532

ABSTRACT

Males in Hymenopteran societies are understudied in many aspects and it is assumed that they only have a reproductive function. We studied the time budget of male honey bees, drones, using multiple methods. Changes in the activities of animals provide important information on biological clocks and their health. Yet, in nature, these changes are subtle and often unobservable without the development and use of modern technology. During the spring and summer mating season, drones emerge from the hive, perform orientation flights, and search for drone congregation areas for mating. This search may lead drones to return to their colony, drift to other colonies (vectoring diseases and parasites), or simply get lost to predation. In a low percentage of cases, the search is successful, and drones mate and die. Our objective was to describe the activity of Apis mellifera drones during the mating season in Northwestern Argentina using three methods: direct observation, video recording, and radio frequency identification (RFID). The use of RFID tagging allows the tracking of a bee for 24 h but does not reveal the detailed activity of drones. We quantified the average number of drones' departure and arrival flights and the time outside the hive. All three methods confirmed that drones were mostly active in the afternoon. We found no differences in results between those obtained by direct observation and by video recording. RFID technology enabled us to discover previously unknown drone behavior such as activity at dawn and during the morning. We also discovered that drones may stay inside the hive for many days, even after initiation of search flights (up to four days). Likewise, we observed drones to leave the hive for several days to return later (up to three days). The three methods were complementary and should be considered for the study of bee drone activity, which may be associated with the diverse factors influencing hive health.

6.
Eur J Neurosci ; 54(3): 4888-4905, 2021 08.
Article in English | MEDLINE | ID: mdl-34097788

ABSTRACT

Early life adversity can disrupt development leading to emotional and cognitive disorders. This study investigated the effects of social isolation after weaning on anxiety, body weight and locomotion, and on extracellular dopamine (DA) and glutamate (GLU) in the nucleus accumbens (NAc) and their modulation by corticotropin releasing factor receptor 1. On the day of weaning, male rats were housed singly or in groups for 10 consecutive days. Anxiety-like behaviors were assessed by an elevated plus maze (EPM) and an open field test (OF). Neurotransmitter levels were measured by in vivo microdialysis. Single-housed rats spent less time, and entered more, into the closed arms of an EPM than group-housed rats. They also spent less time in the center of an OF, weighed more and showed greater locomotion. In the NAc, no differences in CRF, or in basal extracellular DA or GLU between groups, were observed. A depolarizing stimulus increased DA release in both groups but to higher levels in isolated rats, whereas GLU increased only in single-housed rats. Blocking CRF-R1 receptors with CP-154,526 decreased DA release in single-housed but not in group-housed rats. The corticotropin releasing factor receptor type 1 receptor antagonist also decreased GLU in group-housed animals. These results show that isolating adolescent rats increases anxiety, body weight and ambulation, as well as the sensitivity of dopaminergic neurons to a depolarizing stimulus. This study provides further evidence of the detrimental effects of social isolation during early development and indicates that dysregulation of the CRF system in the NAc may contribute to the pathologies observed.


Subject(s)
Dopamine , Nucleus Accumbens , Receptors, Corticotropin-Releasing Hormone/metabolism , Social Isolation , Animals , Anxiety , Male , Nucleus Accumbens/metabolism , Potassium , Rats
7.
Sci Rep ; 10(1): 17929, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087835

ABSTRACT

Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.


Subject(s)
Bees/drug effects , Bees/physiology , Behavior, Animal/drug effects , Circadian Rhythm/drug effects , Ecosystem , Honey , Insecticides/adverse effects , Neonicotinoids/adverse effects , Nicotinic Agonists/adverse effects , Pesticides/adverse effects , Sleep/drug effects , Animals , Learning/drug effects , Memory/drug effects , Spatial Navigation/drug effects
8.
PLoS One ; 14(6): e0218365, 2019.
Article in English | MEDLINE | ID: mdl-31246964

ABSTRACT

Aluminum is increasingly globally bioavailable with acidification from industrial emissions and poor mining practices. This bioavailability increases uptake by flora, contaminating products such as fruit, pollen, and nectar. Concentrations of aluminum in fruit and pollen have been reported between 0.05 and 670mg/L in North America. This is particularly concerning for pollinators that ingest pollen and nectar. Honey bees represent a globally present species experiencing decline in Europe and North America. Region specific decline may be a result of differential toxicity of exposure between subspecies. We find that European honey bees (Apis mellifera mellifera) may have differential toxicity as compared to two allopatric Mediterranean subspecies (Apis mellifera carnica and Apis mellifera caucasica) which showed no within subspecies exposure differences. European honey bees were then used in a laboratory experiment and exposed to aluminum in their daily water supply to mimic nectar contamination at several concentrations. After approximately 3 weeks of aluminum ingestion these bees showed significantly shorter captive longevity than controls at concentrations as low as 10.4mg/L and showed a possible hormetic response in motility. We also compared European honey bees to Africanized/European hybrid bees (Apis mellifera mellifera/scutellata hybrid) in short-term free-flight experiments. Neither the European honey bee nor the hybrid showed immediate foraging deficits in flight time, color choice, or floral manipulation after aluminum exposure. We conclude that European honey bees are at the greatest risk of aluminum related decline from chronic ingestion as compared to other subspecies and offer new methods for future use in honey bee toxicology.


Subject(s)
Aluminum/adverse effects , Bees/drug effects , Bees/physiology , Behavior, Animal , Circadian Rhythm , Environmental Exposure , Pollination , Animals
9.
Curr Biol ; 26(7): 882-92, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26972320

ABSTRACT

Increasing ambient temperature reorganizes the Drosophila sleep pattern in a way similar to the human response to heat, increasing daytime sleep while decreasing nighttime sleep. Mutation of core circadian genes blocks the immediate increase in daytime sleep, but not the heat-stimulated decrease in nighttime sleep, when animals are in a light:dark cycle. The ability of per(01) flies to increase daytime sleep in light:dark can be rescued by expression of PER in either LNv or DN1p clock cells and does not require rescue of locomotor rhythms. Prolonged heat exposure engages the homeostat to maintain daytime sleep in the face of nighttime sleep loss. In constant darkness, all genotypes show an immediate decrease in sleep in response to temperature shift during the subjective day, implying that the absence of light input uncovers a clock-independent pro-arousal effect of increased temperature. Interestingly, the effects of temperature on nighttime sleep are blunted in constant darkness and in cry(OUT) mutants in light:dark, suggesting that they are dependent on the presence of light the previous day. In contrast, flies of all genotypes kept in constant light sleep more at all times of day in response to high temperature, indicating that the presence of light can invert the normal nighttime response to increased temperature. The effect of temperature on sleep thus reflects coordinated regulation by light, the homeostat, and components of the clock, allowing animals to reorganize sleep patterns in response to high temperature with rough preservation of the total amount of sleep.


Subject(s)
Drosophila melanogaster/physiology , Animals , CLOCK Proteins/metabolism , Circadian Clocks , Drosophila Proteins/metabolism , Light , Models, Animal , Period Circadian Proteins/metabolism , Sleep , Temperature , Up-Regulation
10.
Med Mycol ; 52(2): 211-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24577003

ABSTRACT

Aspergilloses are fungal diseases in humans and animals that is caused by members of the genus Aspergillus. Aspergillus flavus is an important opportunistic pathogen, second only to A. fumigatus as a cause of human aspergillosis. Differences in virulence among A. flavus isolates from clinical and other substrates and mating types are not well known. The fruit fly Drosophila melanogaster has become a model organism for investigating virulence of human pathogens due to similarities between its immune system and that of mammals. In this study we used D. melanogaster as a model host to compare virulence among A. flavus strains obtained from clinical sources as compared with other substrates, between isolates of different mating types, and between isolates of A. flavus and A. fumigatus. Anesthetized flies were infected with A. flavus; mortality ranged from 15% to >90%. All strains were virulent, but some were significantly more so than others, which in turn led to the wide mortality range. Clinical strains were significantly less virulent than environmental strains, probably because the clinical strains were from culture collections and the environmental strains were recent isolates. Mean virulence did not differ between MAT1-1 and MAT1-2 mating types and the phylogeny of A. flavus isolates did not predict virulence. A. flavus was on average significantly more virulent than A. fumigatus on two lines of wild-type flies, Canton-S and Oregon-R. D. melanogaster is an attractive model to test pathogenicity and could be useful for identifying genes involved in virulence.


Subject(s)
Aspergillus flavus/growth & development , Aspergillus flavus/pathogenicity , Drosophila melanogaster/microbiology , Models, Animal , Animals , Aspergillosis/microbiology , Aspergillus flavus/classification , Aspergillus flavus/isolation & purification , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/pathogenicity , Female , Genes, Mating Type, Fungal , Humans , Survival Analysis , Virulence
11.
J Exp Biol ; 217(Pt 8): 1307-15, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24436380

ABSTRACT

Circadian rhythms in social insects are highly plastic and are modulated by multiple factors. In addition, complex behaviors such as sun-compass orientation and time learning are clearly regulated by the circadian system in these organisms. Despite these unique features of social insect clocks, the mechanisms as well as the functional and evolutionary relevance of these traits remain largely unknown. Here we show a modification of the Drosophila activity monitoring (DAM) system that allowed us to measure locomotor rhythms of the honey bee, Apis mellifera (three variants; gAHB, carnica and caucasica), and two paper wasps (Polistes crinitus and Mischocyttarus phthisicus). A side-by-side comparison of the endogenous period under constant darkness (free-running period) led us to the realization that these social insects exhibit significant deviations from the Earth's 24 h rotational period as well as a large degree of inter-individual variation compared with Drosophila. Experiments at different temperatures, using honey bees as a model, revealed that testing the endogenous rhythm at 35°C, which is the hive's core temperature, results in average periods closer to 24 h compared with 25°C (23.8 h at 35°C versus 22.7 h at 25°C). This finding suggests that the degree of tuning of circadian temperature compensation varies among different organisms. We expect that the commercial availability, cost-effectiveness and integrated nature of this monitoring system will facilitate the growth of the circadian field in these social insects and catalyze our understanding of the mechanisms as well as the functional and evolutionary relevance of circadian rhythms.


Subject(s)
Bees/physiology , Circadian Rhythm , Motor Activity , Wasps/physiology , Animals , Bees/genetics , Female , Species Specificity , Temperature
12.
Horm Behav ; 65(2): 77-87, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24355096

ABSTRACT

Preclinical studies show that estradiol enhances sensitization to cocaine in females by mechanisms not fully understood. These studies consistently show that ovariectomized (OVX) rats exhibit little or no sensitization to cocaine compared to OVX rats administered estradiol. In this study we varied the dose of cocaine (10, 15, and 30mg/kg), the length of cocaine treatment (from 5 to 10days) and the context of cocaine injections to determine if these factors play a role on estradiol's effects on cocaine sensitization. Because OVX rats are hormonally compromised, they are not representative of the natural state of the animal, and thus the physiological context of these studies remains unclear. To address this issue, we blocked ERs in gonadally intact females by icv administration of the antiestrogen ICI-182,780. Varying the dose or length of exposure to cocaine does not alter estradiol's effect on cocaine sensitization. In contrast, a highly context-dependent sensitization protocol results in robust sensitization even in OVX rats. Interestingly, using this protocol, sensitization in OVX rats diminished with time, suggesting that estradiol is necessary for the maintenance of cocaine sensitization. Blocking brain ERs with ICI completely abolishes the development and expression of cocaine sensitization in gonadally intact female rats, even when tested in a highly context-dependent sensitization protocol. Given these findings, we propose that activation of brain ERs is required for the development and maintenance of sensitization and CPP.


Subject(s)
Cocaine/pharmacology , Conditioning, Operant/drug effects , Cues , Dopamine Uptake Inhibitors/pharmacology , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Receptors, Estrogen/metabolism , Animals , Behavior, Animal/drug effects , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Drug Administration Schedule , Estradiol/analogs & derivatives , Estradiol/metabolism , Female , Fulvestrant , Motor Activity/drug effects , Ovariectomy , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/antagonists & inhibitors
13.
Horm Behav ; 58(1): 33-43, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20026119

ABSTRACT

A consistent finding in drug abuse research is that males and females show differences in their response to drugs of abuse. In women, increased plasma estradiol is associated with increased vulnerability to the psychostimulant and reinforcing effects of drugs of abuse. Our laboratory has focused on the role of estradiol in modulating the response to cocaine. We have seen that ovariectomy increases the locomotor response to a single cocaine injection, whereas estradiol exacerbates the locomotor response to repeated cocaine administration. Cocaine-induced sensitization of brain activity, as measured by fMRI, is also dependent on plasma estradiol. Moreover, we observed that although all ovariectomized rats show conditioned place preference to cocaine, it is more robust in ovariectomized rats with estradiol. Opioid receptors are enriched in brain regions associated with pleasure and reward. We find that in females, the effectiveness of kappa opioid agonists in decreasing the locomotor response to repeated cocaine varies with plasma estradiol. We also find that estradiol regulates the density of mu opioid receptors in brains areas associated with reward. These data hint that in females, estradiol modulates the behavioral effects of cocaine by regulating mu and kappa opioid signaling in mesocorticolimbic brain structures. Identifying the mechanisms that mediate differences in vulnerability to drugs of abuse may lead to effective therapeutic strategies for the treatment and prevention of addiction and relapse. We encourage health practitioners treating persons addicted to drugs to consider gender differences in response to particular pharmacotherapies, as well the sex steroid milieu of the patient.


Subject(s)
Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Estradiol/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/drug effects , Brain/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...