Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 35(1): 89-102, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19187061

ABSTRACT

AIMS: Previous studies on the therapeutic time window for intravascular administration of bone marrow stem cells (BMSCs) after stroke have shown that early intervention (from 3 h after onset) in the middle cerebral artery occlusion (MCAO) rat model is the most effective approach to reduce ischaemic lesion size. We have confirmed these observations but noticed that 2 weeks after transplantation, almost none of the grafted BMSCs could be detected in or around the lesion. The present experiments aimed to assess the fate and kinetics of intravascularly injected BMSCs shortly after administration in correlation to the development of the ischaemic lesion after MCAO. METHODS: We administered a syngeneic suspension of complete (haematopoietic and mesenchymal) BMSCs via the carotid artery to rats at 2 h after MCAO onset. We examined the distribution and tissue location of BMSCs within the first 24 h after arterial administration by perfusion-fixating rats and performing immunohistochemical analysis at different time points. RESULTS: The vast majority (>95%) of BMSCs appeared to become trapped in the spleen shortly after injection. Six hours after implantation, together with the appearance of activated microglia, the first BMSCs could be detected in and around the lesion; their number gradually increased during the first 12 h after implantation but started to decrease at 24 h. The implanted BMSCs were surrounded by activated and phagocytotic microglia. CONCLUSION: Our results show that ischaemic lesion size reduction can already be achieved by the early transient presence at the lesion site of intravascularly implanted BMSCs, possibly mediated via activated microglia.


Subject(s)
Brain Ischemia/therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/physiology , Animals , Apoptosis , Brain/physiopathology , Carotid Arteries , Immunohistochemistry , Infarction, Middle Cerebral Artery/therapy , Injections, Intra-Arterial , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Microglia/physiology , Phagocytosis , Rats , Rats, Wistar , Spleen/physiology , Stroke/therapy
2.
Neuropathol Appl Neurobiol ; 33(5): 510-22, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17854438

ABSTRACT

Cell-replacement therapy promises a useful tool to regenerate compromised brain tissue, but the interaction between grafted cells and host tissues is not well understood. In these studies, the fates of neuroectodermal stem cells were compared in 'healthy' or damaged mouse forebrains. One-cell derived, fluorescent GFP-4C neural stem cells were implanted into normal and cold-lesioned mouse cortices. The fates of implanted cells were followed by histological and immunocytochemical assays for a 55-day postimplantation period. Cells were recultivated from lesioned cortices and characterized by cell cycle parameters, chromosome numbers, immunocytochemical markers and in vitro inducibility. Their intracerebral fates were checked upon re-implanting into 'healthy' mouse brain cortices. GFP-4C cells, giving rise to neurones and astrocytes upon in vitro induction, failed to differentiate in either normal or lesioned cortical tissues. The rate of proliferation and the length of the survival, however, depended on the host environment, markedly. In intact cortices, implanted cells formed compact, isolated aggregates and their survival did not exceed 4 weeks. In compromised cortices, GFP-4C cells survived longer than 8 weeks and repopulated the decayed region. The morphology, viability, immunocytochemical properties, in vitro inducibility and chromosome number of cells recultivated from lesioned cortices were identical to those of the master cells. Long-term survival and repopulating capability were due to signals present in the lesioned, but missing from the intact cortical environment. The results underline the importance of host environment in the fate determination of grafted cells and emphasize the need to understand the 'roles' of recipient tissues for potential cell-replacement methodologies.


Subject(s)
Brain Diseases/therapy , Neurons/transplantation , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Cell Line , Graft Survival , Immunohistochemistry , Male , Mice , Prosencephalon/injuries , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...