Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Surg ; 59(4): 1090-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23850057

ABSTRACT

BACKGROUND: Despite investigation into preventable pharmacologic adjuncts, paraplegia continues to complicate thoracoabdominal aortic interventions. The alpha 2a adrenergic receptor agonist, dexmedetomidine, has been shown to preserve neurologic function and neuronal viability in a murine model of spinal cord ischemia reperfusion, although the mechanism remains elusive. We hypothesize that dexmedetomidine will blunt postischemic inflammation in vivo following thoracic aortic occlusion with in vitro demonstration of microglial inhibition following lipopolysaccharide (LPS) stimulation. METHODS: Adult male C57BL/6 mice underwent 4 minutes of aortic occlusion. Mice received 25 µg/kg intraperitoneal dexmedetomidine (n = 8) or 0.9% normal saline (n = 7) at reperfusion and 12-hour intervals postoperatively until 48 hours. Additionally, sham mice (n = 3), which had aortic arch exposed with no occlusion, were included for comparison. Functional scoring was done at 6 hours following surgery and 12-hour intervals until 60 hours when spinal cords were removed and examined for neuronal viability and cytokine production. Additional analysis of microglia activation was done in 12 hours following surgery. Age- and sex-matched mice had spinal cord removed for microglial isolation culture. Cells were grown to confluence and stimulated with toll-like receptor-4 agonist LPS 100 ng/mL in presence of dexmedetomidine or vehicle control for 24 hours. Microglia and media were then removed for analysis of protein expression. RESULTS: Dexmedetomidine treatment at reperfusion significantly preserved neurologic function with mice in treatment group having a Basso Score of 6.3 in comparison to 2.3 in ischemic control group. Treatment was associated with a significant reduction in microglia activation and in interleukin-6 production. Microglial cells in isolation when stimulated with LPS had an increased production of proinflammatory cytokines and markers of activation. Treatment with dexmedetomidine significantly attenuated microglial activation and proinflammatory cytokine production in vitro with a greater than twofold reduction in tumor necrosis factor-α. CONCLUSIONS: Alpha 2a agonist, dexmedetomidine treatment at reperfusion preserved neurologic function and neuronal viability. Furthermore, dexmedetomidine treatment resulted in an attenuation of microglial activation and proinflammatory cytokine production both in vivo and in vitro following LPS stimulation. This finding lends insight into the mechanism of paralysis following thoracic aortic interventions and may guide future pharmacologic targets for attenuating spinal cord ischemia and reperfusion.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Dexmedetomidine/pharmacology , Microglia/drug effects , Neuroprotective Agents/pharmacology , Paraplegia/drug therapy , Receptors, Adrenergic, alpha-2/drug effects , Signal Transduction/drug effects , Spinal Cord/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Aorta, Thoracic/surgery , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Ligation , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Paraplegia/metabolism , Paraplegia/physiopathology , Receptors, Adrenergic, alpha-2/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/physiopathology , Time Factors , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/metabolism
2.
Circulation ; 128(11 Suppl 1): S152-6, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24030400

ABSTRACT

BACKGROUND: Paraplegia continues to complicate thoracoabdominal aortic interventions. The elusive mechanism of spinal cord ischemia-reperfusion injury has delayed the development of pharmacological adjuncts. Microglia, the resident macrophages of the central nervous system, can have pathological responses after a variety of insults. This can occur through toll-like receptor 4 (TLR-4) in stroke models. We hypothesize that spinal cord ischemia-reperfusion injury after aortic occlusion results from TLR-4-mediated microglial activation in mice. METHODS AND RESULTS: TLR-4 mutant and wild-type mice underwent aortic occlusion for 5 minutes, followed by 60 hours of reperfusion when spinal cords were removed for analysis. Spinal cord cytokine production and microglial activation were assessed at 6 and 36 hours after surgery. Isolated microglia from mutant and wild-type mice were subjected to oxygen and glucose deprivation for 24 hours, after which the expression of TLR-4 and proinflammatory cytokines was analyzed. Mice without functional TLR-4 demonstrated decreased microglial activation and cytokine production and had preserved functional outcomes and neuronal viability after thoracic aortic occlusion. After oxygen and glucose deprivation, wild-type microglia had increased TLR-4 expression and production of proinflammatory cytokines. CONCLUSIONS: The absence of functional TLR-4 attenuated neuronal injury and microglial activation after thoracic aortic occlusion in mice. Furthermore, microglial upregulation of TLR-4 occurred after oxygen and glucose deprivation, and the absence of functional TLR-4 significantly attenuated the production of proinflammatory cytokines. In conclusion, TLR-4-mediated microglia activation in the spinal cord after aortic occlusion is critical in the mechanism of paraplegia after aortic cross-clamping and may provide targets for pharmacological intervention.


Subject(s)
Microglia/metabolism , Reperfusion Injury/metabolism , Spinal Cord Ischemia/metabolism , Toll-Like Receptor 4/physiology , Animals , Cell Survival/physiology , Cells, Cultured , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C3H , Mice, Knockout , Reperfusion Injury/pathology , Spinal Cord Ischemia/pathology , Toll-Like Receptor 4/deficiency
3.
J Vasc Surg ; 56(5): 1398-402, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22832266

ABSTRACT

BACKGROUND: Despite surgical adjuncts, paralysis remains a devastating complication after thoracoabdominal aortic interventions. Dexmedetomidine, a selective α-2a agonist commonly used for sedation in the critical care setting, has been shown to have protective effects against ischemia-reperfusion injuries in multiple organ systems. We hypothesized that treatment with dexmedetomidine would attenuate spinal cord ischemia-reperfusion injury via α-2a receptor activation. METHODS: Adult C57BL/6 mice underwent sternotomy, followed by occlusion of the aortic arch for 4 minutes. Eight experimental mice received pretreatment with intraperitoneal dexmedetomidine (25 µg/kg) and at 12-hour intervals after reperfusion. Eight control mice received an equivalent amount of 0.9% normal saline. Five mice underwent the same procedure with dexmedetomidine (25 µg/kg) and atipamezole (250 µg/kg), an α-2a receptor antagonist. Functional analysis of the mice was obtained at 12-hour intervals and scored using the Basso Mouse Scale for Locomotion until 60 hours. All mice were euthanized at 60 hours. Their spinal cords were removed en bloc and were stained with hematoxylin and eosin to assess cytoarchitecture and neuronal viability. RESULTS: Mice treated with the α-2a agonist demonstrated preserved motor function compared with ischemic controls and with mice treated with the α-2a antagonist in addition to the agonist. Functional differences in the dexmedetomidine group were statistically significant from 24 hours through the remainder of the experiment (P < .05). In addition, the treated mice had preserved cytoarchitecture, decreased vacuolization, and improved neuronal viability compared with ischemic control mice and mice concurrently treated with atipamezole, the dexmedetomidine α-2a antagonist. CONCLUSIONS: Treatment of mice with the α-2a agonist dexmedetomidine preserves motor function and neuronal viability after aortic cross-clamping. In addition, mice exhibited almost complete reversal of the protective effect with the administration of the α-2a receptor antagonist atipamezole. Dexmedetomidine appears to attenuate spinal cord ischemia-reperfusion injury via α-2a receptor-mediated agonism. CLINICAL RELEVANCE: There remains a significant risk of paraplegia after thoracoabdominal aortic interventions. This complication is devastating to the patient and the health care system. Pharmacologic adjuncts to further decrease this complication have been studied; however, few viable options exist. The α-2a agonists have been shown to improve outcomes after strokes but have not been studied in spinal cord ischemia. We show that dexmedetomidine, a commonly used α-2a agonist in the operating room, can preserve neurologic function in mice after aortic cross-clamping. Although the protective mechanism of dexmedetomidine remains unknown, it might prove to be beneficial in reducing the incidence of paraplegia after aortic interventions.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/therapeutic use , Dexmedetomidine/therapeutic use , Reperfusion Injury/drug therapy , Spinal Cord Ischemia/drug therapy , Animals , Male , Mice , Mice, Inbred C57BL
4.
Neurosci Res ; 53(3): 331-42, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16183159

ABSTRACT

Neural stem cells were suggested to migrate to and invade intracranial gliomas. In the presented studies, interactions of NE-4C embryonic neural stem cells were investigated with C6 and Gl261, LL and U87, glioblastoma cells or with primary astrocytes. Glioma-derived humoral factors did not influence the proliferation of stem cells. NE-4C-derived humoral factors did not alter the proliferation of Gl261 and U87 cells, but increased the mitotic activity of C6 cells and that of astrocytes. In chimera-aggregates, all types of glioma cells co-aggregated with astrocytes, but most of them segregated from stem cells. Complete intercalation of stem and tumour cells was detected only in chimera-aggregates of Gl261 glioma and NE-4C cells. If mixed suspensions of NE-4C and Gl261 cells were injected into the brain, stem cells survived and grew inside the tumour mass. NE-4C stem cells, however, did not migrate towards the tumour, if implanted near to Gl261 tumours established in the adult mouse forebrain. The observations indicate that not all types of stem cells could be used for targeting all sorts of brain tumours.


Subject(s)
Brain Neoplasms/therapy , Brain Tissue Transplantation/methods , Ectoderm/transplantation , Stem Cell Transplantation/methods , Stem Cells/physiology , Animals , Astrocytes/physiology , Brain Neoplasms/physiopathology , Cell Aggregation/physiology , Cell Communication/physiology , Cell Line , Cell Line, Transformed , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/drug effects , Coculture Techniques , Ectoderm/cytology , Ectoderm/physiology , Glioblastoma/physiopathology , Glioblastoma/therapy , Graft Survival/physiology , Growth Substances/metabolism , Growth Substances/pharmacology , Humans , Mice , Neoplasm Invasiveness/physiopathology , Rats , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...