Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Comput Aided Mol Des ; 36(9): 623-638, 2022 09.
Article in English | MEDLINE | ID: mdl-36114380

ABSTRACT

In May 2022, JCAMD published a Special Issue in honor of Gerald (Gerry) Maggiora, whose scientific leadership over many decades advanced the fields of computational chemistry and chemoinformatics for drug discovery. Along the way, he has impacted many researchers in both academia and the pharmaceutical industry. In this Epilogue, we explain the origins of the Festschrift and present a series of first-hand vignettes, in approximate chronological sequence, that together paint a picture of this remarkable man. Whether they highlight Gerry's endless curiosity about molecular life sciences or his willingness to challenge conventional wisdom or his generous support of junior colleagues and peers, these colleagues and collaborators are united in their appreciation of his positive influence. These tributes also reflect key trends and themes during the evolution of modern drug discovery, seen through the lens of people who worked with a visionary leader. Junior scientists will find an inspiring roadmap for creative collegiality and collaboration.


Subject(s)
Biological Science Disciplines , Mentors , History, 20th Century , Humans
2.
PLoS One ; 16(1): e0245874, 2021.
Article in English | MEDLINE | ID: mdl-33513170

ABSTRACT

OBJECTIVE: One of the greatest challenges in clinical trial design is dealing with the subjectivity and variability introduced by human raters when measuring clinical end-points. We hypothesized that robotic measures that capture the kinematics of human movements collected longitudinally in patients after stroke would bear a significant relationship to the ordinal clinical scales and potentially lead to the development of more sensitive motor biomarkers that could improve the efficiency and cost of clinical trials. MATERIALS AND METHODS: We used clinical scales and a robotic assay to measure arm movement in 208 patients 7, 14, 21, 30 and 90 days after acute ischemic stroke at two separate clinical sites. The robots are low impedance and low friction interactive devices that precisely measure speed, position and force, so that even a hemiparetic patient can generate a complete measurement profile. These profiles were used to develop predictive models of the clinical assessments employing a combination of artificial ant colonies and neural network ensembles. RESULTS: The resulting models replicated commonly used clinical scales to a cross-validated R2 of 0.73, 0.75, 0.63 and 0.60 for the Fugl-Meyer, Motor Power, NIH stroke and modified Rankin scales, respectively. Moreover, when suitably scaled and combined, the robotic measures demonstrated a significant increase in effect size from day 7 to 90 over historical data (1.47 versus 0.67). DISCUSSION AND CONCLUSION: These results suggest that it is possible to derive surrogate biomarkers that can significantly reduce the sample size required to power future stroke clinical trials.


Subject(s)
Movement , Recovery of Function , Robotics/methods , Stroke Rehabilitation/standards , Stroke/physiopathology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Neurologic Examination/methods , Neurologic Examination/standards , Stroke Rehabilitation/methods
3.
SLAS Technol ; 25(5): 427-435, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32726559

ABSTRACT

Covance Drug Development produces more than 55 million test results via its central laboratory services, requiring the delivery of more than 10 million reports annually to investigators at 35,000 sites in 89 countries. Historically, most of these data were delivered via fax or electronic data transfers in delimited text or SAS transport file format. Here, we present a new web portal that allows secure online delivery of laboratory results, reports, manuals, and training materials, and enables collaboration with investigational sites through alerts, announcements, and communications. By leveraging a three-tier architecture composed of preexisting data warehouses augmented with an application-specific relational database to store configuration data and materialized views for performance optimizations, a RESTful web application programming interface (API), and a browser-based single-page application for user access, the system offers greatly improved capabilities and user experience without requiring any changes to the underlying acquisition systems and data stores. Following a 3-month controlled rollout with 6,500 users at early-adopter sites, the Xcellerate Investigator Portal was deployed to all 240,000 of Covance's Central Laboratory Services' existing users, gaining widespread acceptance and pointing to significant benefits in productivity, convenience, and user experience.


Subject(s)
Communication , Internet , Laboratories , Software , Humans , User-Computer Interface
4.
Chem Soc Rev ; 49(11): 3525-3564, 2020 06 07.
Article in English | MEDLINE | ID: mdl-32356548

ABSTRACT

Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug-Related Side Effects and Adverse Reactions/metabolism , Pharmaceutical Preparations/chemistry , Algorithms , Animals , Artificial Intelligence , Databases, Factual , Drug Design , History, 20th Century , History, 21st Century , Humans , Models, Molecular , Quantitative Structure-Activity Relationship , Quantum Theory , Reproducibility of Results
5.
6.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-30942863

ABSTRACT

Timely, consistent and integrated access to clinical trial data remains one of the pharmaceutical industry's most pressing needs. As part of a comprehensive clinical data repository, we have developed a data warehouse that can integrate operational data from any source, conform it to a canonical data model and make it accessible to study teams in a timely, secure and contextualized manner to support operational oversight, proactive risk management and other analytic and reporting needs. Our solution consists of a dimensional relational data warehouse, a set of extraction, transformation and loading processes to coordinate data ingestion and mapping, a generalizable metrics engine to enable the computation of operational metrics and key performance, quality and risk indicators and a set of graphical user interfaces to facilitate configuration, management and administration. When combined with the appropriate data visualization tools, the warehouse enables convenient access to raw operational data and derived metrics to help track study conduct and performance, identify and mitigate risks, monitor and improve operational processes, manage resource allocation, strengthen investigator and sponsor relationships and other purposes.


Subject(s)
Clinical Trials as Topic , Data Warehousing , Database Management Systems , Humans , Research Report
7.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-30854563

ABSTRACT

Clinical trial data are typically collected through multiple systems developed by different vendors using different technologies and data standards. That data need to be integrated, standardized and transformed for a variety of monitoring and reporting purposes. The need to process large volumes of often inconsistent data in the presence of ever-changing requirements poses a significant technical challenge. As part of a comprehensive clinical data repository, we have developed a data warehouse that integrates patient data from any source, standardizes it and makes it accessible to study teams in a timely manner to support a wide range of analytic tasks for both in-flight and completed studies. Our solution combines Apache HBase, a NoSQL column store, Apache Phoenix, a massively parallel relational query engine and a user-friendly interface to facilitate efficient loading of large volumes of data under incomplete or ambiguous specifications, utilizing an extract-load-transform design pattern that defers data mapping until query time. This approach allows us to maintain a single copy of the data and transform it dynamically into any desirable format without requiring additional storage. Changes to the mapping specifications can be easily introduced and multiple representations of the data can be made available concurrently. Further, by versioning the data and the transformations separately, we can apply historical maps to current data or current maps to historical data, which simplifies the maintenance of data cuts and facilitates interim analyses for adaptive trials. The result is a highly scalable, secure and redundant solution that combines the flexibility of a NoSQL store with the robustness of a relational query engine to support a broad range of applications, including clinical data management, medical review, risk-based monitoring, safety signal detection, post hoc analysis of completed studies and many others.


Subject(s)
Clinical Trials as Topic , Data Warehousing , Database Management Systems , Humans , Machine Learning , User-Computer Interface
8.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-30773591

ABSTRACT

Assembly of complete and error-free clinical trial data sets for statistical analysis and regulatory submission requires extensive effort and communication among investigational sites, central laboratories, pharmaceutical sponsors, contract research organizations and other entities. Traditionally, this data is captured, cleaned and reconciled through multiple disjointed systems and processes, which is resource intensive and error prone. Here, we introduce a new system for clinical data review that helps data managers identify missing, erroneous and inconsistent data and manage queries in a unified, system-agnostic and efficient way. Our solution enables timely and integrated access to all study data regardless of source, facilitates the review of validation and discrepancy checks and the management of the resulting queries, tracks the status of page review, verification and locking activities, monitors subject data cleanliness and readiness for database lock and provides extensive configuration options to meet any study's needs, automation for regular updates and fit-for-purpose user interfaces for global oversight and problem detection.


Subject(s)
Clinical Trials as Topic , Databases as Topic , Data Warehousing
9.
JAMIA Open ; 2(2): 216-221, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31984356

ABSTRACT

OBJECTIVE: We present a new system to track, manage, and report on all risks and issues encountered during a clinical trial. MATERIALS AND METHODS: Our solution utilizes JIRA, a popular issue and project tracking tool for software development, augmented by third-party and custom-built plugins to provide the additional functionality missing from the core product. RESULTS: The new system integrates all issue types under a single tracking tool and offers a range of capabilities, including configurable issue management workflows, seamless integration with other clinical systems, extensive history, reporting, and trending, and an intuitive web interface. DISCUSSION AND CONCLUSION: By preserving the linkage between risks, issues, actions, decisions, and outcomes, the system allows study teams to assess the impact and effectiveness of their risk management strategies and present a coherent account of how the trial was conducted. Since the tool was put in production, we have observed an increase in the number of reported issues and a decrease in the median issue resolution time which, along with the positive user feedback, point to marked improvements in quality, transparency, productivity, and teamwork.

10.
Clin Ther ; 40(7): 1204-1212, 2018 07.
Article in English | MEDLINE | ID: mdl-30100201

ABSTRACT

PURPOSE: Clinical trial monitoring is an essential component of drug development aimed at safeguarding subject safety, data quality, and protocol compliance by focusing sponsor oversight on the most important aspects of study conduct. In recent years, regulatory agencies, industry consortia, and nonprofit collaborations between industry and regulators, such as TransCelerate and International Committee for Harmonization, have been advocating a new, risk-based approach to monitoring clinical trials that places increased emphasis on critical data and processes and encourages greater use of centralized monitoring. However, how best to implement risk-based monitoring (RBM) remains unclear and subject to wide variations in tools and methodologies. The nonprescriptive nature of the regulatory guidelines, coupled with limitations in software technology, challenges in operationalization, and lack of robust evidence of superior outcomes, have hindered its widespread adoption. METHODS: We describe a holistic solution that combines convenient access to data, advanced analytics, and seamless integration with established technology infrastructure to enable comprehensive assessment and mitigation of risk at the study, site, and subject level. FINDINGS: Using data from completed RBM studies carried out in the last 4 years, we demonstrate that our implementation of RBM improves the efficiency and effectiveness of the clinical oversight process as measured on various quality, timeline, and cost dimensions. IMPLICATIONS: These results provide strong evidence that our RBM methodology can significantly improve the clinical oversight process and do so at a lower cost through more intelligent deployment of monitoring resources to the sites that need the most attention.


Subject(s)
Clinical Trials as Topic , Data Accuracy , Guideline Adherence , Humans , Patient Safety , Risk
12.
Contemp Clin Trials Commun ; 9: 108-114, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29696232

ABSTRACT

BACKGROUND: One of the keys to running a successful clinical trial is the selection of high quality clinical sites, i.e., sites that are able to enroll patients quickly, engage them on an ongoing basis to prevent drop-out, and execute the trial in strict accordance to the clinical protocol. Intuitively, the historical track record of a site is one of the strongest predictors of its future performance; however, issues such as data availability and wide differences in protocol complexity can complicate interpretation. Here, we demonstrate how operational data derived from central laboratory services can provide key insights into the performance of clinical sites and help guide operational planning and site selection for new clinical trials. METHODS: Our methodology uses the metadata associated with laboratory kit shipments to clinical sites (such as trial and anonymized patient identifiers, investigator names and addresses, sample collection and shipment dates, etc.) to reconstruct the complete schedule of patient visits and derive insights about the operational performance of those sites, including screening, enrollment, and drop-out rates and other quality indicators. This information can be displayed in its raw form or normalized to enable direct comparison of site performance across studies of varied design and complexity. RESULTS: Leveraging Covance's market leadership in central laboratory services, we have assembled a database of operational metrics that spans more than 14,000 protocols, 1400 indications, 230,000 unique investigators, and 23 million patient visits and represents a significant fraction of all clinical trials run globally in the last few years. By analyzing this historical data, we are able to assess and compare the performance of clinical investigators across a wide range of therapeutic areas and study designs. This information can be aggregated across trials and geographies to gain further insights into country and regional trends, sometimes with surprising results. CONCLUSIONS: The use of operational data from Covance Central Laboratories provides a unique perspective into the performance of clinical sites with respect to many important metrics such as patient enrollment and retention. These metrics can, in turn, be used to guide operational planning and site selection for new clinical trials, thereby accelerating recruitment, improving quality, and reducing cost.

13.
Stroke ; 45(1): 200-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24335224

ABSTRACT

BACKGROUND AND PURPOSE: Because robotic devices record the kinematics and kinetics of human movements with high resolution, we hypothesized that robotic measures collected longitudinally in patients after stroke would bear a significant relationship to standard clinical outcome measures and, therefore, might provide superior biomarkers. METHODS: In patients with moderate-to-severe acute ischemic stroke, we used clinical scales and robotic devices to measure arm movement 7, 14, 21, 30, and 90 days after the event at 2 clinical sites. The robots are interactive devices that measure speed, position, and force so that calculated kinematic and kinetic parameters could be compared with clinical assessments. RESULTS: Among 208 patients, robotic measures predicted well the clinical measures (cross-validated R(2) of modified Rankin scale=0.60; National Institutes of Health Stroke Scale=0.63; Fugl-Meyer=0.73; Motor Power=0.75). When suitably scaled and combined by an artificial neural network, the robotic measures demonstrated greater sensitivity in measuring the recovery of patients from day 7 to day 90 (increased standardized effect=1.47). CONCLUSIONS: These results demonstrate that robotic measures of motor performance will more than adequately capture outcome, and the altered effect size will reduce the required sample size. Reducing sample size will likely improve study efficiency.


Subject(s)
Arm/physiology , Biomarkers , Movement/physiology , Robotics , Stroke Rehabilitation , Stroke/physiopathology , Aged , Biomechanical Phenomena , Data Interpretation, Statistical , Endpoint Determination , Ethnicity , Female , Functional Laterality/physiology , Humans , Male , Models, Anatomic , Nonlinear Dynamics , Predictive Value of Tests , Recovery of Function , Reproducibility of Results
14.
IEEE Trans Image Process ; 22(12): 4918-29, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23996558

ABSTRACT

The sensitivity of the human visual system decreases dramatically with increasing distance from the fixation location in a video frame. Accurate prediction of a viewer's gaze location has the potential to improve bit allocation, rate control, error resilience, and quality evaluation in video compression. Commercially, delivery of football video content is of great interest because of the very high number of consumers. In this paper, we propose a gaze location prediction system for high definition broadcast football video. The proposed system uses knowledge about the context, extracted through analysis of a gaze tracking study that we performed, to build a suitable prior map. We further classify the complex context into different categories through shot classification thus allowing our model to prelearn the task pertinence of each object category and build the prior map automatically. We thus avoid the limitation of assigning the viewers a specific task, allowing our gaze prediction system to work under free-viewing conditions. Bayesian integration of bottom-up features and top-down priors is finally applied to predict the gaze locations. Results show that the prediction performance of the proposed model is better than that of other top-down models that we adapted to this context.


Subject(s)
Computer Simulation , Fixation, Ocular/physiology , Football , Image Processing, Computer-Assisted/methods , Video Recording/methods , Bayes Theorem , Humans
15.
Curr Top Med Chem ; 12(11): 1237-42, 2012.
Article in English | MEDLINE | ID: mdl-22571793

ABSTRACT

Drug discovery is a highly complex process requiring scientists from wide-ranging disciplines to work together in a well-coordinated and streamlined fashion. While the process can be compartmentalized into well-defined functional domains, the success of the entire enterprise rests on the ability to exchange data conveniently between these domains, and integrate it in meaningful ways to support the design, execution and interpretation of experiments aimed at optimizing the efficacy and safety of new drugs. This, in turn, requires information management systems that can support many different types of scientific technologies generating data of imposing complexity, diversity and volume. Here, we describe the key components of our Advanced Biological and Chemical Discovery (ABCD), a software platform designed at Johnson & Johnson to bring coherence in the way discovery data is collected, annotated, organized, integrated, mined and visualized. Unlike the Gordian knot of one-off solutions built to serve a single purpose for a single set of users that one typically encounters in the pharmaceutical industry, we sought to develop a framework that could be extended and leveraged across different application domains, and offer a consistent user experience marked by superior performance and usability. In this work, several major components of ABCD are highlighted, ranging from operational subsystems for managing reagents, reactions, compounds, and assays, to advanced data mining and visualization tools for SAR analysis and interpretation. All these capabilities are delivered through a common application front-end called Third Dimension Explorer (3DX), a modular, multifunctional and extensible platform designed to be the "Swiss-army knife" of the discovery scientist.


Subject(s)
Drug Discovery , Software , Databases, Factual , Drug Industry
16.
J Chem Inf Model ; 52(4): 867-81, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22435959

ABSTRACT

The aim of virtual screening (VS) is to identify bioactive compounds through computational means, by employing knowledge about the protein target (structure-based VS) or known bioactive ligands (ligand-based VS). In VS, a large number of molecules are ranked according to their likelihood to be bioactive compounds, with the aim to enrich the top fraction of the resulting list (which can be tested in bioassays afterward). At its core, VS attempts to improve the odds of identifying bioactive molecules by maximizing the true positive rate, that is, by ranking the truly active molecules as high as possible (and, correspondingly, the truly inactive ones as low as possible). In choosing the right approach, the researcher is faced with many questions: where does the optimal balance between efficiency and accuracy lie when evaluating a particular algorithm; do some methods perform better than others and in what particular situations; and what do retrospective results tell us about the prospective utility of a particular method? Given the multitude of settings, parameters, and data sets the practitioner can choose from, there are many pitfalls that lurk along the way which might render VS less efficient or downright useless. This review attempts to catalogue published and unpublished problems, shortcomings, failures, and technical traps of VS methods with the aim to avoid pitfalls by making the user aware of them in the first place.


Subject(s)
Algorithms , Molecular Docking Simulation , Proteins/chemistry , Small Molecule Libraries/chemistry , User-Computer Interface , Binding Sites , Databases, Chemical , High-Throughput Screening Assays , Humans , Ligands , Likelihood Functions , Protein Binding , Proteins/agonists , Proteins/antagonists & inhibitors , Structure-Activity Relationship
17.
J Chem Inf Model ; 51(12): 3113-30, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22035187

ABSTRACT

Efficient substructure searching is a key requirement for any chemical information management system. In this paper, we describe the substructure search capabilities of ABCD, an integrated drug discovery informatics platform developed at Johnson & Johnson Pharmaceutical Research & Development, L.L.C. The solution consists of several algorithmic components: 1) a pattern mapping algorithm for solving the subgraph isomorphism problem, 2) an indexing scheme that enables very fast substructure searches on large structure files, 3) the incorporation of that indexing scheme into an Oracle cartridge to enable querying large relational databases through SQL, and 4) a cost estimation scheme that allows the Oracle cost-based optimizer to generate a good execution plan when a substructure search is combined with additional constraints in a single SQL query. The algorithm was tested on a public database comprising nearly 1 million molecules using 4,629 substructure queries, the vast majority of which were submitted by discovery scientists over the last 2.5 years of user acceptance testing of ABCD. 80.7% of these queries were completed in less than a second and 96.8% in less than ten seconds on a single CPU, while on eight processing cores these numbers increased to 93.2% and 99.7%, respectively. The slower queries involved extremely generic patterns that returned the entire database as screening hits and required extensive atom-by-atom verification.


Subject(s)
Algorithms , Drug Discovery , Informatics/methods , Small Molecule Libraries/chemistry , Databases, Factual , Drug Discovery/economics , Informatics/economics , Time Factors
18.
J Chem Inf Model ; 51(12): 3275-86, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22035213

ABSTRACT

We present a novel approach for enhancing the diversity of a chemical library rooted on the theory of the wisdom of crowds. Our approach was motivated by a desire to tap into the collective experience of our global medicinal chemistry community and involved four basic steps: (1) Candidate compounds for acquisition were screened using various structural and property filters in order to eliminate clearly nondrug-like matter. (2) The remaining compounds were clustered together with our in-house collection using a novel fingerprint-based clustering algorithm that emphasizes common substructures and works with millions of molecules. (3) Clusters populated exclusively by external compounds were identified as "diversity holes," and representative members of these clusters were presented to our global medicinal chemistry community, who were asked to specify which ones they liked, disliked, or were indifferent to using a simple point-and-click interface. (4) The resulting votes were used to rank the clusters from most to least desirable, and to prioritize which ones should be targeted for acquisition. Analysis of the voting results reveals interesting voter behaviors and distinct preferences for certain molecular property ranges that are fully consistent with lead-like profiles established through systematic analysis of large historical databases.


Subject(s)
Small Molecule Libraries/chemistry , Chemistry, Pharmaceutical/methods , Cluster Analysis , Molecular Structure
19.
J Chem Inf Model ; 51(11): 2852-9, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-21961974

ABSTRACT

Stochastic proximity embedding (SPE) was developed as a method for efficiently calculating lower dimensional embeddings of high-dimensional data sets. Rather than using a global minimization scheme, SPE relies upon updating the distances of randomly selected points in an iterative fashion. This was found to generate embeddings of comparable quality to those obtained using classical multidimensional scaling algorithms. However, SPE is able to obtain these results in O(n) rather than O(n²) time and thus is much better suited to large data sets. In an effort both to speed up SPE and utilize it for even larger problems, we have created a multithreaded implementation which takes advantage of the growing general computing power of graphics processing units (GPUs). The use of GPUs allows the embedding of data sets containing millions of data points in interactive time scales.


Subject(s)
Computational Biology/methods , Drug Discovery/methods , Software , Algorithms , Computational Biology/statistics & numerical data , Computer Graphics , Computers , Databases, Factual , Drug Discovery/statistics & numerical data
20.
J Chem Inf Model ; 51(11): 2843-51, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-21955134

ABSTRACT

We present a novel class of topological molecular descriptors, which we call power keys. Power keys are computed by enumerating all possible linear, branch, and cyclic subgraphs up to a given size, encoding the connected atoms and bonds into two separate components, and recording the number of occurrences of each subgraph. We have applied these new descriptors for the screening stage of substructure searching on a relational database of about 1 million compounds using a diverse set of reference queries. The new keys can eliminate the vast majority (>99.9% on average) of nonmatching molecules within a fraction of a second. More importantly, for many of the queries the screening efficiency is 100%. A common feature was identified for the molecules for which power keys have perfect discriminative ability. This feature can be exploited to obviate the need for expensive atom-by-atom matching in situations where some ambiguity can be tolerated (fuzzy substructure searching). Other advantages over commonly used molecular keys are also discussed.


Subject(s)
Computational Biology/methods , Drug Discovery/methods , Software , Algorithms , Computational Biology/statistics & numerical data , Databases, Factual , Drug Discovery/statistics & numerical data , Fuzzy Logic , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...