Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(21): 5505-5508, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-37219255

ABSTRACT

We present the results of experimental investigations of terahertz radiation generation conversion efficiency in an OH1 nonlinear organic crystal pumped by femtosecond laser pulses at 1240 nm wavelength. An influence of OH1 crystal thickness on the terahertz generation by optical rectification method was studied. It is shown that the optimal crystal thickness for the maximum conversion efficiency is 1 mm, which agrees with the previously made theoretical estimates.

2.
Opt Express ; 29(16): 26093-26102, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614922

ABSTRACT

We report the results of experimental studies and numerical simulation of the dynamics of the electron-hole pairs formation in silicon under the action of a two-period terahertz pulse with a maximum electric field strength of up to 23 MV/cm. It is shown that an inhomogeneous distribution of the charge carrier concentration over the depth of the silicon sample is formed, which persists for several microseconds. This inhomogeneity is formed due to a sharp increase in the rate of filling the conduction band with free carriers in the subsurface input layer of the silicon wafer, which occurs at a field strength above 15 MV/cm.

3.
Opt Express ; 28(23): 33921-33936, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182871

ABSTRACT

The ideal laser source for nonlinear terahertz spectroscopy offers large versatility delivering both ultra-intense broadband single-cycle pulses and user-selectable multi-cycle pulses at narrow linewidths. Here we show a highly versatile terahertz laser platform providing single-cycle transients with tens of MV/cm peak field as well as spectrally narrow pulses, tunable in bandwidth and central frequency across 5 octaves at several MV/cm field strengths. The compact scheme is based on optical rectification in organic crystals of a temporally modulated laser beam. It allows up to 50 cycles and central frequency tunable from 0.5 to 7 terahertz, with a minimum width of 30 GHz, corresponding to the photon-energy width of ΔE=0.13 meV and the spectroscopic-wavenumber width of Δ(λ-1)=1.1 cm-1. The experimental results are excellently predicted by theoretical modelling. Our table-top source shows similar performances to that of large-scale terahertz facilities but offering in addition more versatility, multi-colour femtosecond pump-probe opportunities and ultralow timing jitter.

4.
Opt Express ; 27(19): 27273-27281, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674592

ABSTRACT

A versatile table-top high-intense source of terahertz radiation, enabling to generate pulses of both broadband and narrowband spectra with a tunable frequency up to 3 THz is presented. The terahertz radiation pulses are generated by optical rectification of femtosecond pulses of Cr:forsterite laser setup in nonlinear organic crystal OH1. Electric field strengths of broadband and narrowband terahertz pulses were achieved close to 20 MV/cm and more than 2 MV/cm, correspondingly. Experiments on excitation of spin subsystem oscillations of an antiferromagnetic NiO were carried out. Selective excitation of 0.42 THz mode was observed for the first time at room temperature by a narrowband terahertz pulses tuned close to mode frequency.

5.
Opt Lett ; 44(17): 4099-4102, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465338

ABSTRACT

We present the experimental data on the direct measurements of spatial distribution of the terahertz (THz) pulse intensity profile using a commercial silicon-based charge-coupled device (CCD) camera in the spectral range from 1-3 THz. A method to measure the dimensions of a high-intensity THz radiation beam in the focal plane using the CCD camera is proposed and experimentally verified.

6.
Sci Rep ; 9(1): 9753, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278349

ABSTRACT

The experimental findings on the second harmonic generation (SHG) in centrosymmetric crystal silicon are reported. The SHG is induced by extremely high electric field (up to 15 MV/cm) parallel to the crystal surface of a short terahertz (THz) pulse while probing by an infrared femtosecond optical pulse. The SHG under such unique conditions is reported for the first time. At the electric field amplitude above 8 MV/cm, the quadratic dependence of the SHG yield integrated over the THz pulse duration on the electric field is violated and SHG yield is not changed with a further increase of the THz field. Saturation of SHG intensity at high electric fields is explained in terms of carrier density increase due to impact ionization and destructive interference of electric-field induced and current induced nonlinear polarizations.

7.
Phys Rev Lett ; 120(8): 085704, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543009

ABSTRACT

We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

8.
Opt Lett ; 42(23): 4889-4892, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29216136

ABSTRACT

The results of high-field terahertz transmission experiments on n-doped silicon (carrier concentration of 8.7×1016 cm-3) are presented. We use terahertz pulses with electric field strengths up to 3.1 MV cm-1 and a pulse duration of 700 fs. A huge transmittance enhancement of ∼90 times is observed with increasing of the terahertz electric field strengths within the range of 1.5-3.1 MV cm-1.

9.
Ontogenez ; 48(1): 63-72, 2017.
Article in Russian | MEDLINE | ID: mdl-30277222

ABSTRACT

In this study, modern techniques of laser microsurgery of cell spheroids have been used to develop a new simple, reproducible model for studying the mechanisms of repair and regeneration in vitro. Nanosecond laser pulses were applied to perform a microdissection of the outer and the inner zones of the spheroids from dermal fibroblasts. To achieve effective dissection and preservation of spheroid viability, the optimal parameters were chosen: 355 nm wavelength, 100 Hz frequency, 2 ns pulse duration, laser pulses in the range of 7­9 µ J. After microdissection, we observed injury of the spheroids : the edges of the wound surface opened and the angular opening reached a value of more than 180°. As early as during the first hour after spheroid microdissection with laser radiation, the surviving cells changed their shape: cells on the spheroid surface and directly in the damaged area became rounded. One day after microdissection, the structure of the spheroids began to partially recover, the cells in the surface layers began to take the original flattened shape; debris of dead damaged cells and their fragments was gradually cleared from the spheroid composition. In the proposed model, the first data on stimulation of structure recovery of injured spheroids from dermal fibroblasts with a P199 synthetic polypeptide, which is used in cosmetology for the initiation of antiaging and regenerative effects in the skin, were received. After microdissection, recovery of the spheroids structure with a few surface layers of flattened imbricated arranged cells and polygonal cells of the inner zone in the presence of P199 peptide was faster than in the control group, and was completed within 7 days, presumably due to the remodeling of the survived cells.


Subject(s)
Laser Therapy/methods , Microsurgery/methods , Models, Biological , Regeneration , Spheroids, Cellular/metabolism , Humans , Laser Therapy/instrumentation , Microsurgery/instrumentation , Spheroids, Cellular/cytology
10.
Biol Open ; 5(7): 993-1000, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27334698

ABSTRACT

Modern techniques of laser microsurgery of cell spheroids were used to develop a new simple reproducible model for studying repair and regeneration in vitro Nanosecond laser pulses (wavelength 355 nm, frequency 100 Hz, pulse duration 2 ns) were applied to perform a microdissection of the outer and the inner zones of human bone marrow multipotent mesenchymal stromal cells (BM MMSC) spheroids. To achieve effective dissection and preservation of spheroid viability, the energy of laser pulses was optimized and adjusted in the range 7-9 µJ. After microdissection, the edges of the wound surface opened and the angular opening reached a value of more than 180°. The destruction of the initial spheroid structure was observed in the wound area, with surviving cells changing their shape into a round one. Partial restoration of a spheroid form took place in the first six hours. The complete structure restoration accompanying the reparative processes occurred gradually over seven days due to remodelling of surviving cells.

11.
Opt Express ; 23(4): 4573-80, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836494

ABSTRACT

We investigated Terahertz generation in organic crystals DSTMS, DAST and OH1 directly pumped by a Cr:forsterite laser at central wavelength of 1.25 µm. This pump laser technology provides a laser-to-THz energy conversion efficiency higher than 3 percent. Phase-matching is demonstrated over a broad 0.1-8 THz frequency range. In our simple setup we achieved hundred µJ pulses in tight focus resulting in electric and magnetic field larger than 10 MV/cm and 3 Tesla.

12.
Opt Lett ; 39(23): 6632-5, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25490639

ABSTRACT

We report on high-field terahertz transients with 0.9-mJ pulse energy produced in a 400 mm² partitioned organic crystal by optical rectification of a 30-mJ laser pulse centered at 1.25 µm wavelength. The phase-locked single-cycle terahertz pulses cover the hard-to-access low-frequency range between 0.1 and 5 THz and carry peak fields of more than 42 MV/cm and 14 Tesla with the potential to reach over 80 MV/cm by choosing appropriate focusing optics. The scheme based on a Cr:Mg2SiO4 laser offers a high conversion efficiency of 3% using uncooled organic crystal. The collimated pump laser configuration provides excellent terahertz focusing conditions.

13.
Bull Exp Biol Med ; 151(1): 154-6, 2011 May.
Article in English | MEDLINE | ID: mdl-22442822

ABSTRACT

Practical advantages of using femtosecond laser pulses for manipulations in cell surgery were demonstrated. The use of femtosecond laser pulses enables precision punching of the zona pellucida of the embryo without damaging its cells. With the help of femtosecond laser tweezers/scalpel, auxillary laser hatching was performed and a technique of optical biopsy of mammalian embryo was developed, which enabled non-contact sampling of embryonic material for preimplantation diagnostics. Our findings suggest that about 90% embryos retained the ability to develop at least to the blastula stage after this manipulation.


Subject(s)
Lasers , Microsurgery/methods , Optical Tweezers/adverse effects , Preimplantation Diagnosis/methods , Animals , Biopsy , Embryo, Mammalian , Female , Mice , Microscopy , Microsurgery/instrumentation , Pregnancy , Preimplantation Diagnosis/instrumentation , Zona Pellucida/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...