Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 20(7): 1147-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26369537

ABSTRACT

Density functional theory (DFT) calculations are performed on the active site of biotin synthase (BS) to investigate the sulfur transfer from the Fe(2)S(2) cluster to dethiobiotin (DTB). The active site is modeled to include both the 1st and 2nd sphere residues. Molecular orbital theory considerations and calculation on smaller models indicate that only an S atom (not S²â») transfer from an oxidized Fe(2)S(2) cluster leads to the formation of biotin from the DTB using two adenosyl radicals generated from S-adenosyl-L-methionine. The calculations on larger protein active site model indicate that a 9-monothiobiotin bound reduced cluster should be an intermediate during the S atom insertion from the Fe(2)S(2) cluster consistent with experimental data. The Arg260 bound to Fe1, being a weaker donor than cysteine bound to Fe(2), determines the geometry and the electronic structure of this intermediate. The formation of this intermediate containing the C9-S bond is estimated to have a ΔG(≠) of 17.1 kcal/mol while its decay by the formation of the 2nd C6-S bond is calculated to have a ΔG(≠) of 29.8 kcal/mol, i.e. the 2nd C-S bond formation is calculated to be the rate determining step in the cycle and it leads to the decay of the Fe(2)S(2) cluster. Significant configuration interaction (CI), present in these transition states, helps lower the barrier of these reactions by ~30-25 kcal/mol relative to a hypothetical outer-sphere reaction. The conserved Phe285 residue near the Fe(2)S(2) active site determines the stereo selectivity at the C6 center of this radical coupling reaction. Reaction mechanism of BS investigated using DFT calculations. Strong CI and the Phe285 residue control the kinetic rate and stereochemistry of the product.


Subject(s)
Biotin/chemistry , Iron-Sulfur Proteins/chemistry , Models, Molecular , Quantum Theory , Sulfurtransferases/chemistry , Sulfurtransferases/metabolism , Catalytic Domain , Hydrogen Bonding , Thermodynamics , X-Ray Diffraction
2.
Blood Cells Mol Dis ; 54(3): 217-23, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25703682

ABSTRACT

PURPOSE: Leukocyte adhesion deficiency type-I (LAD-I) is caused by mutations in the ITGB2 gene, encoding the ß2-subunit of ß2-integrin (CD18) which leads to markedly reduced expression of CD18 on leukocytes resulting into recurrent life threatening infections. Here we aim to identify the molecular defects underlying LAD-I in Indian patients and correlate with the clinical presentation. METHODS: Blood was collected from 30 patients and their parents for absolute neutrophil count, expression of CD18 and CD11 by flow cytometry and DNA extraction. PCR and DNA sequencing of the ITGB2 gene was done for mutation characterization. RESULTS: Phenotypically, 22 patients were LAD-I(0), 1 was LAD-I(-) and 7 were LAD-I(+) showing no expression and reduced expression of CD18 respectively. Nine novel mutations in 15 patients and 11 known mutations in 16 patients were detected. Prenatal diagnosis was performed for 5 families. CONCLUSION: In this study 30 patients were phenotypically and genotypically evaluated for a less known disease LAD-I. Unavailability of curative options to majority of the patients and high cost of supportive care emphasize the need to increase awareness about a suspicious case so that timely management can be given to the patient and prenatal diagnosis can be offered to their families.


Subject(s)
CD18 Antigens/genetics , Leukocyte-Adhesion Deficiency Syndrome/genetics , Mutation , DNA Mutational Analysis , Female , Humans , India , Infant , Infant, Newborn , Leukocyte-Adhesion Deficiency Syndrome/diagnosis , Leukocytes/metabolism , Leukocytes/pathology , Male , Prenatal Diagnosis , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...