Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Sci Technol ; : 19322968221133795, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36384312

ABSTRACT

Spinal cord stimulation (SCS) technology has been recently approved by the US Food and Drug Administration (FDA) for painful diabetic neuropathy (PDN). The treatment involves surgical implantation of electrodes and a power source that delivers electrical current to the spinal cord. This treatment decreases the perception of pain in many chronic pain conditions, such as PDN. The number of patients with PDN treated with SCS and the amount of data describing their outcomes is expected to increase given four factors: (1) the large number of patients with this diagnosis, (2) the poor results that have been obtained for pain relief with pharmacotherapy and noninvasive non-pharmacotherapy, (3) the results to date with investigational SCS technology, and (4) the recent FDA approval of systems that deliver this treatment. Whereas traditional SCS replaces pain with paresthesias, a new form of SCS, called high-frequency 10-kHz SCS, first used for pain in 2015, can relieve PDN pain without causing paresthesias, although not all patients experience pain relief by SCS. This article describes (1) an overview of SCS technology, (2) the use of SCS for diseases other than diabetes, (3) the use of SCS for PDN, (4) a comparison of high-frequency 10-kHz and traditional SCS for PDN, (5) other SCS technology for PDN, (6) deployment of SCS systems, (7) barriers to the use of SCS for PDN, (8) risks of SCS technology, (9) current recommendations for using SCS for PDN, and (10) future developments in SCS.

2.
J Diabetes Sci Technol ; : 19322968221132252, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36305521

ABSTRACT

Painful diabetic neuropathy is a common vexing problem for people with diabetes and a costly problem for society. The pathophysiology is not well understood, and no safe and effective mechanistically-based treatment has been identified. Poor glycemic control is a risk factor for painful diabetic neuropathy. Excessive intraneuronal glucose in people with diabetes can be shunted away from physiological glycolysis into multiple pathological pathways associated with neuropathy and pain. The first three treatments that are traditionally offered consist of risk factor reduction, lifestyle modifications, and pharmacological therapy, which includes only three drugs that are approved for this indication by the United States Food and Drug Administration. All of these traditional treatments are often inadequate for relieving neuropathic pain, and thus, new approaches are needed. Modern devices based on neuromodulation technology, which act directly on the nervous system, have been recently cleared by the United States Food and Drug Administration for painful diabetic neuropathy and offer promise as next-in-line therapy when traditional therapies fail.

SELECTION OF CITATIONS
SEARCH DETAIL
...