Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4006, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740849

ABSTRACT

The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.

2.
ACS Nano ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320296

ABSTRACT

Zero-dimensional pores spanning only a few angstroms in size in two-dimensional materials such as graphene are some of the most promising systems for designing ion-ion selective membranes. However, the key challenge in the field is that so far a crack-free macroscopic graphene membrane for ion-ion separation has not been realized. Further, methods to tune the pores in the Å-regime to achieve a large ion-ion selectivity from the graphene pore have not been realized. Herein, we report an Å-scale pore size tuning tool for single layer graphene, which incorporates a high density of ion-ion selective pores between 3.5 and 8.5 Å while minimizing the nonselective pores above 10 Å. These pores impose a strong confinement for ions, which results in extremely high selectivity from centimeter-scale porous graphene between monovalent and bivalent ions and near complete blockage of ions with the hydration diameter, DH, greater than 9.0 Å. The ion diffusion study reveals the presence of an energy barrier corresponding to partial dehydration of ions with the barrier increasing with DH. We observe a reversal of K+/Li+ selectivity at elevated temperature and attribute this to the relative size of the dehydrated ions. These results underscore the promise of porous two-dimensional materials for solute-solute separation when Å-scale pores can be incorporated in a precise manner.

3.
ACS Nano ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324377

ABSTRACT

Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.

4.
Adv Mater ; 36(15): e2307151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190759

ABSTRACT

Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized Sn clusters and their host pores in carbon nanofiber) during sodiation and desodiation is revealed using a state-of-the-art 3D electron microscopic reconstruction technique. For the first time, the anomalous expansion of Sn clusters after desodiation is observed owing to the aggregation of clusters/single atoms. Pore connectivity is retained despite the anomalous expansion, suggesting inhibition of solid electrolyte interface formation in the sub-2-nm pores. Taking advantage of the built-in nanoconfinement feature, the CNF film with nanometer-sized interconnected pores hosting Sn clusters (≈2 nm) enables high utilization (95% at a high rate of 1 A g-1) of Sn active sites while maintaining an improved initial Coulombic efficiency of 87%. The findings provide insights into electrochemical reactions in a confined space and a guiding principle in electrode design for battery applications.

5.
Phys Rev Lett ; 131(16): 168001, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925704

ABSTRACT

Unraveling the oxidation of graphitic lattice is of great interest for atomic-scale lattice manipulation. Herein, we build epoxy cluster, atom by atom, using Van der Waals' density-functional theory aided by Clar's aromatic π-sextet rule. We predict the formation of cyclic epoxy trimers and its linear chains propagating along the armchair direction of the lattice to minimize the system's energy. Using low-temperature scanning tunneling microscopy on oxidized graphitic lattice, we identify linear chains as bright features that have a threefold symmetry, and which exclusively run along the armchair direction of the lattice confirming the theoretical predictions.

6.
J Phys Chem C Nanomater Interfaces ; 127(45): 22015-22022, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38024196

ABSTRACT

The exposure of graphene to O3 results in functionalization of its lattice with epoxy, even at room temperature. This reaction is of fundamental interest for precise lattice patterning, however, is not well understood. Herein, using van der Waals density functional theory (vdW-DFT) incorporating spin-polarized calculations, we find that O3 strongly physisorbs on graphene with a binding energy of -0.46 eV. It configures in a tilted position with the two terminal O atoms centered above the neighboring graphene honeycombs. A dissociative chemisorption follows by surpassing an energy barrier of 0.75 eV and grafting an epoxy group on graphene reducing the energy of the system by 0.14 eV from the physisorbed state. Subsequent O3 chemisorption is preferred on the same honeycomb, yielding two epoxy groups separated by a single C-C bridge. We show that capturing the onset of spin in oxygen during chemisorption is crucial. We verify this finding with experiments where an exponential increase in the density of epoxy groups as a function of reaction temperature yields an energy barrier of 0.66 eV, in agreement with the DFT prediction. These insights will help efforts to obtain precise patterning of the graphene lattice.

7.
JACS Au ; 3(10): 2844-2854, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37885574

ABSTRACT

Controlling the size of single-digit pores, such as those in graphene, with an Å resolution has been challenging due to the limited understanding of pore evolution at the atomic scale. The controlled oxidation of graphene has led to Å-scale pores; however, obtaining a fine control over pore evolution from the pore precursor (i.e., the oxygen cluster) is very attractive. Herein, we introduce a novel "control knob" for gasifying clusters to form pores. We show that the cluster evolves into a core/shell structure composed of an epoxy group surrounding an ether core in a bid to reduce the lattice strain at the cluster core. We then selectively gasified the strained core by exposing it to 3.2 eV of light at room temperature. This allowed for pore formation with improved control compared to thermal gasification. This is because, for the latter, cluster-cluster coalescence via thermally promoted epoxy diffusion cannot be ruled out. Using the oxidation temperature as a control knob, we were able to systematically increase the pore density while maintaining a narrow size distribution. This allowed us to increase H2 permeance as well as H2 selectivity. We further show that these pores could differentiate CH4 from N2, which is considered to be a challenging separation. Dedicated molecular dynamics simulations and potential of mean force calculations revealed that the free energy barrier for CH4 translocation through the pores was lower than that for N2. Overall, this study will inspire research on the controlled manipulation of clusters for improved precision in incorporating Å-scale pores in graphene.

8.
Nat Mater ; 22(11): 1387-1393, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735526

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn2+ and Co2+) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired. However, the state-of-the-art methods yield membranes where ZIF films have thickness exceeding 50 nm. Here we report a crystallization method from ultradilute precursor mixtures, which exploits registry with the underlying crystalline substrate, yielding (within minutes) crystalline ZIF films with thickness down to that of a single structural building unit (2 nm). The film crystallized on graphene has a rigid aperture made of a six-membered zinc imidazolate coordination ring, enabling high-permselective H2 separation performance. The method reported here will probably accelerate the development of two-dimensional metal-organic framework films for efficient membrane separation.

9.
Acc Mater Res ; 3(10): 1073-1087, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36338295

ABSTRACT

Gas separation is one of the most important industrial processes and is poised to take a larger role in the transition to renewable energy, e.g., carbon capture and hydrogen purification. Conventional gas separation processes involving cryogenic distillation, solvents, and sorbents are energy intensive, and as a result, the energy footprint of gas separations in the chemical industry is extraordinarily high. This has motivated fundamental research toward the development of novel materials for high-performance membranes to improve the energy efficiency of gas separation. These novel materials are expected to overcome the intrinsic limitations of the conventional membrane material, i.e., polymers, where a longstanding trade-off between the separation selectivity and the permeance has motivated research into nanoporous materials as the selective layer for the membranes. In this context, atom-thick materials such as nanoporous single-layer graphene constitute the ultimate limit for the selective layer. Gas transport from atom-thick nanopores is extremely fast, dependent primarily on the energy barrier that the gas molecule experiences in translocating the nanopore. Consequently, the difference in the energy barriers for two gas molecules determines the gas pair selectivity. In this Account, we summarize the development in the field of nanoporous single-layer graphene membranes for gas separation. We start by discussing the mechanism for gas transport across atom-thick nanopores, which then yields the crucial design elements needed to achieve high-performance membranes: (i) nanopores with an adequate electron-density gap to sieve the desired gas component (e.g., smaller than 0.289, 0.33, 0.346, 0.362, and 0.38 nm for H2, CO2, O2, N2, and CH4, respectively), (ii) narrow pore size distribution to limit the nonselective effusive transport from the tail end of the distribution, and (iii) high density of selective pores. We discuss and compare the state-of-the-art bottom-up and top-down routes for the synthesis of nanoporous graphene films. Mechanistic insights and parameters controlling the size, distribution, and density of nanopores are discussed. Fundamental insights are provided into the reaction of ozone with graphene, which has been successfully used by our group to develop membranes with record-high carbon capture performance. Postsynthetic modifications, which allow the tuning of the transport by (i) tailoring the relative contributions of adsorbed-phase and gas-phase transport, (ii) competitive adsorption, and (iii) molecular cutoff adjustment, are discussed. Finally, we discuss practical aspects that are crucial in successfully preparing practical membranes using atom-thick materials as the selective layer, allowing the eventual scale-up of these membranes. Crack- and tear-free preparation of membranes is discussed using the approach of mechanical reinforcement of graphene with nanoporous carbon and polymers, which led to the first reports of millimeter- and centimeter-scale gas-sieving membranes in the year 2018 and 2021, respectively. We conclude with insights and perspectives highlighting the key scientific and technological gaps that must be addressed in the future research.

10.
Adv Mater ; 34(51): e2206627, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36271513

ABSTRACT

Generating pores in graphene by decoupled nucleation and expansion is desired to achieve a fine control over the porosity, and is desired to advance several applications. Herein, epoxidation is introduced, which is the formation of nanosized epoxy clusters on the graphitic lattice as nucleation sites without forming pores. In situ gasification of clusters inside a transmission electron microscope shows that pores are generated precisely at the site of the clusters by surpassing an energy barrier of 1.3 eV. Binding energy predictions using ab initio calculations combined with the cluster nucleation theory reveal the structure of the epoxy clusters and indicate that the critical cluster is an epoxy dimer. Finally, it is shown that the cluster gasification can be manipulated to form Å-scale pores which then effectively sieve gas molecules based on their size. This decoupled cluster nucleation and pore formation will likely pave the way for an independent control of pore size and density.

11.
ACS Nano ; 16(9): 15382-15396, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36000823

ABSTRACT

Enhancing the kinetics of liquid-vapor transition from nanoscale confinements is an attractive strategy for developing evaporation and separation applications. The ultimate limit of confinement for evaporation is an atom thick interface hosting angstrom-scale nanopores. Herein, using a combined experimental/computational approach, we report highly enhanced water evaporation rates when angstrom sized oxygen-functionalized graphene nanopores are placed at the liquid-vapor interface. The evaporation flux increases for the smaller nanopores with an enhancement up to 35-fold with respect to the bare liquid-vapor interface. Molecular dynamics simulations reveal that oxygen-functionalized nanopores render rapid rotational and translational dynamics to the water molecules due to a reduced and short-lived water-water hydrogen bonding. The potential of mean force (PMF) reveals that the free energy barrier for water evaporation decreases in the presence of nanopores at the atomically thin interface, which further explains the enhancement in evaporation flux. These findings can enable the development of energy-efficient technologies relying on water evaporation.

12.
Angew Chem Int Ed Engl ; 61(40): e202207457, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35906967

ABSTRACT

Poly(triazine imide) or PTI is an ordered graphitic carbon nitride hosting Å-scale pores attractive for selective molecular transport. AA'-stacked PTI layers are synthesized by ionothermal route during which ions occupy the framework and occlude the pores. Synthesis of ion-free PTI hosting AB-stacked layers has been reported, however, pores in this configuration are blocked by the neighboring layer. The unavailability of open pore limits application of PTI in molecular transport. Herein, we demonstrate acid treatment for ion depletion which maintains AA' stacking and results in open pore structure. We provide first direct evidence of ion-depleted open pores by imaging with the atomic resolution using integrated differential phase-contrast scanning transmission electron microscopy. Depending on the extent of ion-exchange, AA' stacking with open channels and AB stacking with closed channels are obtained and imaged for the first time. The accessibility of open channels is demonstrated by enhanced proton transport through ion depleted PTI.

13.
JACS Au ; 2(3): 723-730, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373205

ABSTRACT

Oxidation of graphitic materials has been studied for more than a century to synthesize materials such as graphene oxide, nanoporous graphene, and to cut or unzip carbon nanotubes. However, the understanding of the early stages of oxidation is limited to theoretical studies, and experimental validation has been elusive. This is due to (i) challenging sample preparation for characterization because of the presence of highly mobile and reactive epoxy groups formed during oxidation, and (ii) gasification of the functional groups during imaging with atomic resolution, e.g., by transmission electron microscopy. Herein, we utilize a low-temperature scanning tunneling microscope (LT-STM) operating at 4 K to solve the structure of epoxy clusters form upon oxidation. Three distinct nanostructures corresponding to three stages of evolution of vacancy defects are found by quantitatively verifying the experimental data by the van der Waals density functional theory. The smallest cluster is a cyclic epoxy trimer. Their observation validates the theoretical prediction that epoxy trimers minimize the energy in the cyclic structure. The trimers grow into honeycomb superstructures to form larger clusters (1-3 nm). Vacancy defects evolve only in the larger clusters (2-3 nm) in the middle of the cluster, highlighting the role of lattice strain in the generation of vacancies. Semiquinone groups are also present and are assigned at the carbon edge in the vacancy defects. Upon heating to 800 °C, we observe cluster-free vacancy defects resulting from the loss of the entire epoxy population, indicating a reversible functionalization of epoxy groups.

14.
Angew Chem Int Ed Engl ; 61(18): e202200321, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35244325

ABSTRACT

A controlled manipulation of graphene edges and vacancies is desired for molecular separation, sensing and electronics applications. Unfortunately, available etching methods always lead to vacancy nucleation making it challenging to control etching. Herein, we report CO2 -led controlled etching down to 2-3 Šper minute while completely avoiding vacancy nucleation. This makes CO2 a unique etchant for decoupling pore nucleation and expansion. We show that CO2 expands the steric-hindrance-free edges with an activation energy of 2.71 eV, corresponding to the energy barrier for the dissociative chemisorption of CO2 . We demonstrate the presence of an additional configurational energy barrier for nanometer-sized vacancies resulting in a significantly slower rate of expansion. Finally, CO2 etching is applied to map the location of the intrinsic vacancies in the polycrystalline graphene film where we show that the intrinsic vacancy defects manifest mainly as grain boundary defects where intragrain defects from oxidative etching constitute a minor population.

15.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34493654

ABSTRACT

Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.

16.
ACS Nano ; 15(8): 13230-13239, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34319081

ABSTRACT

Predictable and tunable etching of angstrom-scale nanopores in single-layer graphene (SLG) can allow one to realize high-performance gas separation even from similar-sized molecules. We advance toward this goal by developing two etching regimes for SLG where the incorporation of angstrom-scale vacancy defects can be controlled. We screen several exposure profiles for the etchant, controlled by a multipulse millisecond treatment, using a mathematical model predicting the nucleation and pore expansion rates. The screened profiles yield a narrow pore-size-distribution (PSD) with a majority of defects smaller than missing 16 carbon atoms, suitable for CO2/N2 separation, attributing to the reduced pore expansion rate at a high pore density. Resulting nanoporous SLG (N-SLG) membranes yield attractive CO2 permeance of 4400 ± 2070 GPU and CO2/N2 selectivity of 33.4 ± 7.9. In the second etching regime, by limiting the supply of the etchant, the nanopores are allowed to expand while suppressing the nucleation events. Extremely attractive carbon capture performance marked with CO2 permeance of 8730 GPU, and CO2/N2 selectivity of 33.4 is obtained when CO2-selective polymeric chains are functionalized on the expanded nanopores. We show that the etching strategy is uniform and scalable by successfully fabricating high-performance centimeter-scale membrane.

17.
Chem Mater ; 33(11): 4035-4044, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34121808

ABSTRACT

The flexibility of the ZIF-8 aperture, which inhibits a molecular cutoff of 3.4 Å, can be reduced by rapid heat treatment to obtain CO2-selective membranes. However, the early stages of the structural, morphological, and chemical changes responsible for the lattice rigidification remain elusive. Herein, using ex situ and in situ experiments, we determine that a small shrinkage of the unit-cell parameter, ∼0.2%, is mainly responsible for this transformation. Systematic gas permeation studies show that one needs to achieve this shrinkage without a disproportionately large shrinkage in the grain size of the polycrystalline film to avoid the formation of cracks. We show that this condition is uniquely achieved in a short time by exposure of ZIF-8 to a mildly humid environment where lattice parameter shrinkage is accelerated by the incorporation of linker vacancy defects, while the shrinkage in grain size is limited. The water-vapor-led incorporation of linker vacancy defects takes place with an energy barrier of 123 kJ mol-1, much higher than that for the thermal degradation of ZIF-8, <80 kJ mol-1. The latter is promoted by heat treatment in a dry environment at a relatively higher temperature; however, this condition does not shrink the lattice parameters at short exposure time.

18.
Sci Adv ; 7(9)2021 Feb.
Article in English | MEDLINE | ID: mdl-33627433

ABSTRACT

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2 However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm-2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.

19.
Nat Mater ; 20(3): 362-369, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33020610

ABSTRACT

The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250-300 °C make these membranes promising for precombustion carbon capture.

20.
Sci Adv ; 6(4): eaay9851, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32064325

ABSTRACT

Poly(triazine imide) (PTI), a crystalline g-C3N4, hosting two-dimensional nanoporous structure with an electron density gap of 0.34 nm, is highly promising for high-temperature hydrogen sieving because of its high chemical and thermal robustness. Currently, layered PTI is synthesized in potentially unsafe vacuum ampules in milligram quantities. Here, we demonstrate a scalable and safe ambient pressure synthesis route leading to several grams of layered PTI platelets in a single batch with 70% yield with respect to the precursor. Solvent exfoliation under anhydrous conditions led to single-layer PTI nanosheets evidenced by the observation of triangular g-C3N4 nanopores. Gas permeation studies confirm that PTI nanopores can sieve He and H2 from larger molecules. Last, high-temperature H2 sieving from PTI nanosheet-based membranes, prepared by the scalable filter coating technique, is demonstrated with H2 permeance reaching 1500 gas permeation units, with H2/CO2, H2/N2, and H2/CH4 selectivities reaching 10, 50, and 60, respectively, at 250°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...