Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(26): 7955-7965, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34169719

ABSTRACT

The self-assembly of lipids into nanoscale vesicles (liposomes) is routinely accomplished in water. However, reports of similar vesicles in polar organic solvents like glycerol, formamide, and ethylene glycol (EG) are scarce. Here, we demonstrate the formation of nanoscale vesicles in glycerol, formamide, and EG using the common phospholipid lecithin (derived from soy). The samples we study are simple binary mixtures of lecithin and the solvent, with no additional cosurfactants or salt. Lecithin dissolves readily in the solvents and spontaneously gives rise to viscous fluids at low lipid concentrations (∼2-4%), with structures ∼200 nm detected by dynamic light scattering. At higher concentrations (>10%), lecithin forms clear gels that are strongly birefringent at rest. Dynamic rheology confirms the elastic response of gels, with their elastic modulus being ∼20 Pa at ∼10% lipid. Images from cryo-scanning electron microscopy (cryo-SEM) indicate that concentrated samples are "vesicle gels," where multilamellar vesicles (MLVs, also called "onions"), with diameters between 50 and 600 nm, are close-packed across the sample volume. This structure can explain both the elastic rheology as well as the static birefringence of the samples. The discovery of vesicles and vesicle gels in polar solvents widens the scope of systems that can be created by self-assembly. Interestingly, it is much easier to form vesicles in polar solvents than in water, and the former are stable indefinitely, whereas the latter tend to aggregate or coalesce over time. The stability is attributed to refractive index-matching between lipid bilayers and the solvents, i.e., these vesicles are relatively "invisible" and thus experience only weak attractions. The ability to use lipids (which are "green" or eco-friendly molecules derived from renewable natural sources) to thicken and form gels in polar solvents could also prove useful in a variety of areas, including cosmetics, pharmaceuticals, and lubricants.


Subject(s)
Lipid Bilayers , Liposomes , Gels , Phospholipids , Solvents
2.
Langmuir ; 36(23): 6370-6377, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32491869

ABSTRACT

Wormlike micelles (WLMs) are polymer-like chains formed by surfactant self-assembly in water. Recently, we have shown that WLMs can also be self-assembled in polar organic liquids like glycerol using a cationic surfactant and an aromatic salt. In this work, we focus on the dynamic rheology of the WLMs in glycerol and demonstrate that their rheology is very different from that of WLMs in water. Aqueous WLMs that are entangled into transient networks exhibit the rheology of a perfect Maxwell fluid having a single relaxation time tR-thereby, their elastic modulus G' and viscous modulus G″ intersect at a crossover frequency ωc = 1/tR. WLMs in glycerol also form entangled networks, but they are not Maxwell fluids; instead, they exhibit a double-crossover of G' and G″ (at ωc1 and ωc2) within the ω-window accessible by rheometry (10-2 to 102 rad/s). The first crossover at ωc1 (∼1 rad/s) corresponds to the terminal relaxation time (i.e., the timescale for chains to disentangle from the transient network and relax by reptation). At the other extreme, at frequencies above ωc2 (which is ∼10 rad/s), the rheology is dominated by the segmental motion of the chains. This "breathing regime" has rarely been accessed via experiments for aqueous WLMs because it falls around 105 rad/s. We believe that glycerol, a solvent that is much more viscous than water, exerts a crucial influence in pushing ωc2 to 1000-fold lower frequencies. On the basis of the rheology, we also hypothesize that WLMs in glycerol are shorter and weakly entangled compared to WLMs in water. Moreover, we suggest that WLMs in glycerol are "unbreakable" chains-i.e., the chains remain mostly intact instead of breaking and re-forming frequently-and this polymer-like behavior explains why the samples are quite unlike Maxwell fluids.

3.
Langmuir ; 35(50): 16630-16639, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31804836

ABSTRACT

Dispersants, used in the mitigation of oil spills, are mixtures of amphiphilic molecules (surfactants) dissolved in a solvent. The recent large-scale use of dispersants has raised environmental concerns regarding the safety of these materials. In response to these concerns, our lab has developed a class of eco-friendly dispersants based on blends of the food-grade surfactants, soy lecithin (L) and Tween 80 (T), in a solvent. We have shown that these "L/T dispersants" are very efficient at dispersing crude oil into seawater. The solvent for dispersants is usually selected based on factors like toxicity, volatility, or viscosity of the overall mixture. However, with regard to the dispersion efficiency of crude oil, the solvent is considered to play a negligible role. In this paper, we re-examine the role of solvent in the L/T system and show that it can actually have a significant impact on the dispersion efficiency. That is, the dispersion efficiency can be altered from poor to excellent simply by varying the solvent while keeping the same blend of surfactants. We devise a systematic procedure for selecting the optimal solvents by utilizing Hansen solubility parameters. The optimal solvents are shown to have a high affinity for crude oil and limited hydrophilicity. Our analysis further enables us to identify solvents that combine high dispersion efficiency, good solubility of the L/T surfactants, a low toxicity profile, and a high flash point.

4.
Biomolecules ; 9(10)2019 10 10.
Article in English | MEDLINE | ID: mdl-31658626

ABSTRACT

This paper focuses on extending drug release duration from contact lenses by incorporating catanionic aggregates. The aggregates consist of a long-chain cationic surfactant, i.e., cetalkonium chloride (CKC), and an oppositely charged anti-inflammatory amphiphilic drug. We studied three non-steroidal anti-inflammatory (NSAID) drugs with different octanol-water partition coefficients; diclofenac sodium (DFNa), flurbiprofen sodium (FBNa), and naproxen sodium (NPNa). Confirmation of catanionic aggregate formation in solution was determined by steady and dynamic shear rheology measurements. We observed the increased viscosity, shear thinning, and viscoelastic behavior characteristic of wormlike micelles; the rheological data are reasonably well described using a Maxwellian fluid model with a single relaxation time. In vitro release experiments demonstrated that the extension in the drug release time is dependent on the ability of a drug to form viscoelastic catanionic aggregates. Such aggregates retard the diffusive transport of drug molecules from the contact lenses. Our study revealed that the release kinetics depends on the CKC concentration and the alkyl chain length of the cationic surfactant. We demonstrated that more hydrophobic drugs such as diclofenac sodium show a more extended release than less hydrophobic drugs such as naproxen sodium.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Contact Lenses , Drug Delivery Systems , Fatty Alcohols/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Cations/chemistry , Diclofenac/chemistry , Diffusion , Drug Liberation , Flurbiprofen/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Naproxen/chemistry , Viscosity
5.
Langmuir ; 35(39): 12782-12791, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31525901

ABSTRACT

Wormlike micelles (WLMs) are long, flexible cylindrical chains formed by the self-assembly of surfactants in semidilute solutions. Scientists have been fascinated by WLMs because of their similarities to polymers, while at the same time, the viscoelastic properties of WLM solutions have made them useful in a variety of industrial applications. To date, most studies on WLMs have been performed in water (i.e., a highly polar liquid), while there are a few examples of "reverse" WLMs in oils (i.e., highly nonpolar liquids). However, in organic solvents with lower polarity than water such as glycerol, formamide, and ethylene glycol, there have been no reports of WLMs thus far. Here, we show that it is indeed possible to induce a long-tailed cationic surfactant to assemble into WLMs in several of these solvents. To form WLMs, the surfactant is combined with a "binding" salt, i.e., one with a large organic counterion that is capable of binding to the micelles. Examples of such salts include sodium salicylate and sodium tosylate, and we find self-assembly to be maximized when the surfactant and salt concentrations are near-equimolar. Interestingly, the addition of a simple, inorganic salt such as sodium chloride (NaCl) to the same surfactant does not induce WLMs in polar solvents (although it does so in water). Thus, the design rules for WLM formation in polar solvents are distinct from those in water. Aqueous WLMs have been characterized at temperatures from 25 °C and above, but few studies have examined WLMs at much lower (e.g., subzero) temperatures. Here, we have selected a surfactant with a very low Krafft point (i.e., the surfactant does not crystallize out of solution upon cooling due to a cis-unsaturation in its tail) and a low-freezing solvent, viz. a 90/10 mixture of glycerol and ethylene glycol. In these mixtures, we find evidence for WLMs that persist down to temperatures as low as -20 °C. Rheological techniques as well as small-angle neutron scattering (SANS) have been used to characterize the WLMs under these conditions. Much like their aqueous counterparts, WLMs in polar solvents show viscoelastic properties, and accordingly, these fluids could find applications as synthetic lubricants or as improved antifreezing fluids.

6.
Adv Mater ; 31(23): e1806575, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30993751

ABSTRACT

The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct-writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear-thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near-complete combustion being evident upon examination of the postcombustion products.

7.
Phys Chem Chem Phys ; 19(36): 24458-24466, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28880323

ABSTRACT

Wormlike micelles (WLMs) formed from surfactants have attracted much attention for their ability to thicken water in a manner similar to water-soluble polymers. It is known that WLMs are cylindrical filaments that can attain very long contour lengths (∼few µm), akin to chains of polymers with ultra-high molecular weights (UHMWs). In this study, we aim to make a direct comparison between the thickening capabilities of WLMs and UHMW polymers. The chosen surfactant is erucyl dimethyl amidopropyl betaine (EDAB), a C22-tailed zwitterionic surfactant known to form particularly long WLMs independent of salt. The chosen polymer is nonionic polyacrylamide (PAM) having an UHMW of 12 MDa. Both EDAB WLMs and the PAM show strong thickening capability in saline water at 25 °C, but the WLMs are more efficient. For example, a 1.0 wt% EDAB WLM sample has a similar zero-shear viscosity η0 (∼40 000 mPa s) to a 2.5 wt% PAM solution. When temperature is increased, both samples show an exponential reduction in viscosity, but the WLMs are more sensitive to temperature. Microstructural differences between the two systems are confirmed by data from small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). As expected, the key differences are that the WLM chains have a larger core radius (Rcore) and in turn, a longer persistence length (lp) than the PAM chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...