Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 9: 101905, 2022.
Article in English | MEDLINE | ID: mdl-36405364

ABSTRACT

This paper presents a high order approximation scheme to solve the generalized fractional telegraph equation (GFTE) involving the generalized fractional derivative (GFD). The GFD is characterized by a scale function σ ( t ) and a weight function ω ( t ) . Thus, we study the solution behavior of the GFTE for different σ ( t ) and ω ( t ) . The scale function either stretches or contracts the solution while the weight function dramatically shifts the numerical solution of the GFTE. The time fractional GFTE is approximated using quadratic scheme in the temporal direction and the compact finite difference scheme in the spatial direction. To improve the numerical scheme's accuracy, we use the non-uniform mesh. The convergence order of the whole discretized scheme is, O ( τ 2 α - 3 , h 4 ) , where τ and h are the temporal and spatial step sizes respectively. The outcomes of the work are as follows: •The error estimate for approximation of the GFD on non-uniform meshes is established.•The numerical scheme's stability and convergence are examined.•Numerical results for four examples are compared with those obtained using other method. The study shows that the developed scheme achieves higher accuracy than the scheme discussed in literature.

2.
J Arthropod Borne Dis ; 10(3): 370-80, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27308295

ABSTRACT

BACKGROUND: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. METHODS: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. RESULTS: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. CONCLUSION: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents.

3.
Parasit Vectors ; 8: 333, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26082160

ABSTRACT

BACKGROUND: Anopheles culicifacies s.l. is one of the primary vectors of malaria in India responsible for the highest number of malaria cases. This vector is resistant to DDT in most parts of the country with indication of emerging resistance to pyrethroids. Since knockdown resistance (kdr) is known to confer cross-resistance between DDT and pyrethroids owing to a common target site of action, knowledge of prevalence of knockdown resistance (kdr) alleles is important from insecticide resistance management point of view. METHODS: Nine populations of An. culicifacies belonging to five states of India, representing northern, western and central-east India, were screened for the presence of two alternative kdr mutations L1014F and L1014S using PCR-based assays. Dead and alive mosquitoes, following WHO standard insecticide susceptibility test against deltamethrin and DDT, were tested for allelic association. RESULTS: L1014F mutation was recorded in all populations studied except from Haryana and Rajasthan states in northern India, with low frequencies ranging between 0.012 and 0.076; whereas presence of L1014S mutation was recorded in five populations only belonging to central-east India, with allelic frequencies ranging between 0.010 and 0.046. Both the kdr mutant alleles were found mostly in heterozygous condition without deviating from Hardy-Weinberg equilibrium. Both mutations showed protection against deltamethrin whereas only L1014S mutation showed protection against DDT when tested using additive model. CONCLUSIONS: The two L1014-kdr mutations, L1014F and L1014S, co-occurred in five populations belonging to Chhattisgarh and Odisha states of India whereas L1014F was present in all populations studied except populations from northern states. Both kdr mutations were found with very low allelic frequencies mostly in heterozygous condition and exhibited protection against deltamethrin.


Subject(s)
Anopheles/drug effects , Anopheles/genetics , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Mutation, Missense , Sodium Channels/genetics , Alleles , Animals , India , Nitriles/pharmacology , Polymerase Chain Reaction , Pyrethrins/pharmacology
4.
Malar J ; 10: 59, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21401946

ABSTRACT

BACKGROUND: Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. METHODS: Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). RESULTS: Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. CONCLUSIONS: Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.


Subject(s)
Anopheles/drug effects , Anopheles/genetics , Drug Resistance , Mutation, Missense , Sodium Channels/genetics , Sodium Channels/metabolism , Amino Acid Substitution/genetics , Animals , Female , Gene Frequency , India , Molecular Sequence Data , Sequence Analysis, DNA
5.
Malar J ; 9: 146, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20509922

ABSTRACT

BACKGROUND: Knockdown resistance in insects resulting from mutation(s) in the voltage gated Na+ channel (VGSC) is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common kdr mutation in insects, was reported in Anopheles culicifacies-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an An. culicifacies population from Malkangiri district of Orissa, India. METHODS: Anopheles culicifacies sensu lato (s.l.) samples, collected from a population of Malkangiri district of Orissa (India), were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR) was developed for the detection of the new mutation L1014S. The An. culicifacies population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS) and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing. RESULTS: DNA sequencing of An. culicifacies individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA)-to-Phe (TTT) or -Ser (TCA) changes, respectively. A third and novel substitution, Val (GTG)-to-Leu (TTG or CTG), was identified at residue V1010 resulting from either of the two transversions-3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the identification of the new mutation L1014S was found specific as evident from DNA sequencing results of respective samples. Since L1014S was found tightly linked to V1010L, no separate assay was developed for the latter mutation. Screening of population using PIRA-PCR assays for 1014S and ARMS for 1014F alleles revealed the presence of all the three amino acid substitutions in low frequency. CONCLUSIONS: This is the first report of the presence of L1014S (homologous to the kdr-e in An. gambiae) and a novel mutation V1010L (resulting from G-to-T or -C transversions) in the VGSC of An. culicifacies in addition to the previously described mutation L1014F. The V1010L substitution was tightly linked to L1014S substitution. A new PIRA-PCR strategy was developed for the detection of L1014S mutation and the linked V1010L mutation.


Subject(s)
Anopheles/genetics , DNA Primers/genetics , Insect Vectors/genetics , Insecticide Resistance/genetics , Sodium Channels/genetics , Amino Acid Substitution , Animals , Anopheles/drug effects , Base Sequence , Female , Genes, Insect/drug effects , Genotype , India , Insect Vectors/drug effects , Ion Channel Gating , Point Mutation/drug effects , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Sequence Analysis, DNA/trends
6.
Integr Zool ; 3(4): 311-21, 2008 Dec.
Article in English | MEDLINE | ID: mdl-21396081

ABSTRACT

Exposure to mercuric chloride (HgCl(2) ; 5 mg kg(-1) body weight; i.p.) induced oxidative stress in mice and substantially increased lipid peroxidation (LPO) and oxidized glutathione (GSSG) levels, decreased the level of reduced glutathione (GSH) and various antioxidant enzymes in liver and also increased the activities of liver marker enzymes in serum. Therapy with propolis extract, a resinous wax-like beehive product (200 mg kg(-1) orally, after mercury administration), for 3 days inhibited LPO and the formation of GSSG and increased the level of GSH in the liver. Release of serum transaminases, alkaline phosphatase, lactate dehydrogenase and γ-glutamyl transpeptidase were significantly restored after propolis treatment. The activities of antioxidant enzymes, that is, superoxide dismutase, catalase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase, were also concomitantly restored towards normal levels after propolis administration. These observations clearly demonstrate that propolis treatment augments antioxidant defense against mercury-induced toxicity and provide evidence that propolis has therapeutic potential as a hepatoprotective agent.

7.
Rouxs Arch Dev Biol ; 195(5): 296-301, 1986 Jul.
Article in English | MEDLINE | ID: mdl-28306054

ABSTRACT

The stage-specific appearance of calliphorin in cuticles of Calliphora vicina was analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. The fate of the protein, injected into last instar larvae, was pursued by autoradiography of histological sections. Fractionation of sclerotized pupal cuticle in buffer-soluble, urea-soluble and NaOH-soluble fractions shows that calliphorin forms covalent and non-covalent links with other cuticle components. Calliphorin traverses the epidermal cells and enters the cuticle in an undegraded state and appears to be an important constituent of the sclerotizing system.

SELECTION OF CITATIONS
SEARCH DETAIL
...