Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 127(13): 134105, 2007 Oct 07.
Article in English | MEDLINE | ID: mdl-17919009

ABSTRACT

A previously reported method for conducting molecular dynamics simulations of gas-phase chemical dynamics on ab initio potential-energy surfaces using modified novelty sampling and feedforward neural networks is applied to the investigation of the unimolecular dissociation of vinyl bromide. The neural network is fitted to a database comprising the MP4(SDQ) energies computed for 71 969 nuclear configurations using an extended basis set. Dissociation rate coefficients and branching ratios at an internal excitation energy of 6.44 eV for all six open reaction channels are reported. The distribution of vibrational energy in HBr formed in three-center dissociation is computed and found to be in excellent accord with experimental measurements. Computational requirements for the electronic structure calculations, neural network training, and trajectory calculations are given. The weight and bias matrices required for implementation of the neural network potential are made available through the Supplementary Material.

2.
J Phys Chem B ; 110(51): 26185-8, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181274

ABSTRACT

We present the results of molecular dynamics simulations of crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using the SRT-AMBER force field (P. M. Agrawal et al., J. Phys. Chem. B 2006, 110, 5721), which combines the rigid-molecule force field developed by Sorescu-Rice-Thompson (D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 1997, 101, 798) with the intramolecular interactions obtained from the Generalized AMBER Force Field (Wang et al., J. Comput. Chem. 2004, 25, 1157). The calculated crystal density at room conditions is about 10% lower than the measured value, while the lattice parameters and thermodynamic melting point are within about 5% at ambient pressure. The chair and inverted chair conformation, bond lengths, and bond angles of the RDX molecule are accurately predicted; however, there are some inaccuracies in the calculated orientations of the NO2 groups. The SRT-AMBER force field predicts overall reasonable results, but modifications, probably in the torsional parameters, are needed for a more accurate force field.

4.
J Chem Phys ; 124(13): 134306, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16613454

ABSTRACT

The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.

5.
J Phys Chem B ; 110(11): 5721-6, 2006 Mar 23.
Article in English | MEDLINE | ID: mdl-16539517

ABSTRACT

Physical properties of condensed-phase 1,3,3-trinitroazetidine (TNAZ) have been computed with molecular dynamics (MD) and a nonreactive, fully flexible force field formulated by combining the intramolecular interactions obtained from the Generalized AMBER Force Field and the rigid-molecule force field developed by Sorescu-Rice-Thompson [J. Phys. Chem. B 1997, 101, 798] (AMBER-SRT). The results are compared with MD calculations, using the AMBER force field. The predicted densities of crystalline TNAZ from both force fields are about 10% lower than the experimental value. The calculated thermodynamic melting point at 1 atm from the AMBER-SRT force field is 390 K, in good agreement with the measured value of 374 K, while the AMBER force field predicts a thermodynamic melting point of 462 K. The lattice parameters and the molecular and crystal structures calculated with the AMBER-SRT force field are in excellent agreement with experiment. Simulations with the AMBER-SRT force field were also used to generate the isotherm of TNAZ up to 4 GPa and the bulk modulus and its pressure derivative.

6.
J Chem Phys ; 124(5): 054321, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16468883

ABSTRACT

The reaction dynamics of vibrationally excited vinyl bromide have been investigated using classical trajectory methods on a neural network potential surface that is fitted to an ab initio database of 12 122 configuration energies obtained from electronic structure calculations conducted at the MP4(SDQ) level of theory using a 6-31G(d,p) basis set for the carbon and hydrogen atoms and Huzinaga's (43334334) basis set augmented with split outer s and p orbitals (4332143214) and a polarization f orbital with an exponent of 0.5 for the bromine atom. The sampling of the 12-dimensional configuration hyperspace of vinyl bromide prior to execution of the electronic structure calculations is accomplished by combining novelty-sampling methods, chemical intuition, and trajectory sampling on empirical and neural network surfaces. The final potential is obtained using a two-layer feed-forward neural network comprising 38 and 1 neurons, respectively, with hyperbolic tangent sigmoid and linear transfer functions in the hidden and output layers, respectively. The fitting is accomplished using the Levenberg-Marquardt algorithm with early stopping and Bayesian regularization methods to avoid overfitting. The interpolated potentials have a standard deviation from the ab initio results of 0.0578 eV, which is within the range generally regarded as "chemical accuracy" for the purposes of electronic structure calculations. It is shown that the potential surface may be easily and conveniently transferred from one research group to another. The files required for transfer of the vinyl bromide surface can be obtained from the Electronic Physics Auxiliary Publication Service. Total dissociation rate coefficients for vinyl bromide are obtained at five different excitation energies between 4.50 and 6.44 eV. Branching ratios into each of the six open reaction channels are computed at 24 vibrational energies in the range between 4.00 and 6.44 eV. The distribution of vibrational energies in HBr formed via three-center dissociation from vinyl bromide is determined and compared with previous theoretical and experimental results. It is concluded that the combination of ab initio electronic structure calculations, novelty sampling with chemical intuition and trajectories on empirical analytic surfaces, and feed-forward neural networks provides a viable framework in which to execute purely ab initio molecular-dynamics studies on complex systems with multiple open reaction channels.

7.
J Chem Phys ; 123(22): 224711, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16375499

ABSTRACT

A new approach involving neural networks combined with molecular dynamics has been used for the determination of reaction probabilities as a function of various input parameters for the reactions associated with the chemical-vapor deposition of carbon dimers on a diamond (100) surface. The data generated by the simulations have been used to train and test neural networks. The probabilities of chemisorption, scattering, and desorption as a function of input parameters, such as rotational energy, translational energy, and direction of the incident velocity vector of the carbon dimer, have been considered. The very good agreement obtained between the predictions of neural networks and those provided by molecular dynamics and the fact that, after training the network, the determination of the interpolated probabilities as a function of various input parameters involves only the evaluation of simple analytical expressions rather than computationally intensive algorithms show that neural networks are extremely powerful tools for interpolating the probabilities and rates of chemical reactions. We also find that a neural network fits the underlying trends in the data rather than the statistical variations present in the molecular-dynamics results. Consequently, neural networks can also provide a computationally convenient means of averaging the statistical variations inherent in molecular-dynamics calculations. In the present case the application of this method is found to reduce the statistical uncertainty in the molecular-dynamics results by about a factor of 3.5.

SELECTION OF CITATIONS
SEARCH DETAIL
...