Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 7(2): 137, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28593521

ABSTRACT

In soil, plant roots coexist with bacteria and fungi that produce siderophores capable of sequestering the available iron. Microbial cyanogenesis has been demonstrated in many species of fungi and in a few species of bacteria (e.g., Chromobacterium and Pseudomonas). Fluorescent Pseudomonas isolates P29, P59, P144, P166, P174, P187, P191 and P192 were cyanogenic and produced siderophores in the presence of a strong chelater 8-Hydroxyquinoline (50 mg/l). A simple confrontation assay for identifying potential antagonists was developed. Fluorescent Pseudomonas isolates P66, P141, P144, P166 and P174 were antagonistic against both Rhizoctonia solani and Sclerotium rolfsii. Vigorous plant growth was observed following seed bacterization with P141, P200 and P240. In field experiments, seed bacterization with selected bacterial isolates resulted in reduced collar rot (S. rolfsii) incidence.

2.
3 Biotech ; 7(1): 27, 2017 May.
Article in English | MEDLINE | ID: mdl-28401463

ABSTRACT

Fluorescent Pseudomonas, aerobic, Gram-negative bacteria possess many traits that make them well suited as biocontrol and growth promoting agents. Our study revealed that isolates vary in mechanisms involved in the antagonist interactions against pathogen and growth stimulatory effects on host plant. Most of the potential antagonistic fluorescent Pseudomonas identified were avid iron chelators (P233, P201, 176, P76 and, P76). Wide variation in ACCd enzyme production was observed. ACCd enzyme assay tested P141 > P247 > P126, as potential ACCd enzyme producer. Cynogenic fluorescent Pseudomonas isolates P76 and P124 exerted strong inhibitory against S. rolfsii. However, another cynogenic fluorescent Pseudomonas P179 had no influence against R solani and S. rolfsii which remains unexplained. Noticeable crop specific plant growth stimulation exerted by different fluorescent Pseudomonas was observed on wheat (P124), chickpea (P72), lathyrus (P85, P216), greengram (P11), blackgram (P99, P233); bottlegourd (P248, P167); rice (P176, P247).

3.
3 Biotech ; 5(1): 45-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-28324359

ABSTRACT

A diverse and versatile spectrum of metabolic activities among isolates of fluorescent Pseudomonas putida indicates their adaptability to various niches. These polyhydroxybutyrate producing and phosphate solubilizing isolates showed a high level of functional and genetic versatility among themselves. One of the potential P. putida isolate P132 can contribute as a candidate agent for both biocontrol and PGPR applications. Identified as one of the most efficient PHB producer and phosphate solubilizer, in vitro detection of P132 showed the presence of genes for phenazine, pyrrolnitrin, pyoluteorin and 2,4 diacetylphloroglucinol along with polyhydroxyalkanoate.

4.
Springerplus ; 1(1): 73, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23526575

ABSTRACT

Chitin is the second most abundant polymer in nature after cellulose and plays a major role in fungal cell walls. As a producer of variety of chitinase enzymes Trichoderma has become an important means of biological control of fungal diseases. A simple and sensitive method based on the use of basal medium with colloidal chitin as sole carbon source supplemented with Bromo cresol purple (pH indicator dye) is proposed to evaluate large populations of Trichoderma for chitinase activity. The soluble substrate with pH indicator dye (Bromo cresol purple, BCP) for the assay of chitinase activity on solid media is sensitive, easy, reproducible semi-quantitative enzyme diffusion plate assay and economic option to determine chitinases. Colloidal chitin derived from Rhizoctonia cell wall and commercial chitin included as a carbon source in broth also allowed selection and comparison of chitinolytic and exochitinase activity in Trichoderma spectrophotometrically. Released N-acetyl-ß--D-glucosamine (NAGA) ranged from 37.67 to 174.33 mg/ml and 37.67 to 327.67 mg/ml and p-nitrophenol (pNP) ranged from 0.17 to 35.78 X 10(-3) U/ml and 0.62 to 32.6 X 10(-3) U/ml) respectively with Rhizoctonia cell wall and commercial chitin derived colloidal chitin supplemented broth.

SELECTION OF CITATIONS
SEARCH DETAIL
...